• Title/Summary/Keyword: Electrical Resistivity

Search Result 2,812, Processing Time 0.031 seconds

Application of Electrical Resistivity Tomography Using Single Well in Seawater Intrusion Areas (해수침투지역에서 단일 시추공을 이용한 전기비저항 토모그래피 탐사의 적용성)

  • Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.369-376
    • /
    • 2007
  • Electrical resistivity tomography was carried out at seawater intrusion monitoring wells located at watershed in coastal areas. It is difficult to identify the characteristics of resistivity near monitoring well in case of using high signalto-noise ratio array due to the high conductivity condition in coastal aquifer although electrical resistivity survey is well adopted to delineate hydrogeological characteristics with the distribution of electrical resistivity. To improve the quality of electrical resistivity survey for two sites with seawater intrusion monitoring wells, inversion with the results of holeto-surface electrical resistivity tomography using single well was executed. The results of inversion for aquifer near wells were verified with the results of drilling log with the informations of fracture, electrical conductivity logging and normal resistivity logging. The inversion for aquifer near one of two wells was also performed at low and high tide with the same electrodes, respectively. From the inversion result, it is possible to obtain the resistivity images with high resolution and to identify the characteristics of aquifer related to seawater intrusion with tidal fluctuation. From this study, it was demonstrated that the hole-to-surface electrical resistivity tomography method accompanied with drilling log, electrical conductivity logging and normal resistivity logging would be useful to delineate the hydrogeological structures near monitoring wells in coastal areas.

A Study on the Effect of Soil Wineral and Component of the Pore Fluid to the Electrical Resistivity (흙의 구성광물과 간극수의 성분이 비저항값에 미치는 영향에 관한 연구)

  • Yoon, Chun-Kyeong;Yu, Chan;Yoon, Kil-Lim
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.59-64
    • /
    • 1998
  • The environmental problem of the rural area has been accelerated in soil as well as water. Soil contamination is usually caused by improper operation of landfills, abandoned mine fields, accidental spills, and illegal dumpings. Once soil contamination is initiated, pollutants migrate and may cause groundwater contamination which takes much effort for remediation. Early detection, therefore, is important to prevent further contamination. Electrical resistivity method was used to detect soil contamination, but it was not effective to the heterogeneous condition. Static cone penetrometer test (CPT) has been used widely to investigate geotechnical properties of the underground. In this study, electrical resistivity method and CPT are combined to improve the applicability of it. The pilot test was performed to examine the variation of electrical resistivity with different soil minerals and pore fluid characteristics. Soil samples used were poorly graded sand, silty sandy soil, and weathered granite soil. For all the cases, electrical resistivity decreased with increasing of moisture content. Soil mineral also affected the electrical resistivity significantly. Above all, leachate addition in the pore fluid was very sensitive and caused decreasing of electrical resistivity markedly. It implies that electrical resistivity method can be applied to investigate pollutant plume effectively. This is specially sure when the sensors contact the contaminated soils directly. The CPT method involves cone penetration to the ground, therefore, underground contamination around the cone could be investigated effectively even for heterogeneous condition as it penetrates if electrical resistivity sensors are attached on the cone.

  • PDF

Experimental Study on the Effect of Specimen Size on Electrical Resistivity Measurement (전기비저항 측정에서 실험체 크기의 영향에 대한 실험적 연구)

  • Lim, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.164-169
    • /
    • 2018
  • In this study, the effect of the size of the specimen on the apparent resistivity was investigated at the laboratory level for electrical resistivity. The specimens were measured for apparent resistivity by fabricating specimens with different sides and heights. Experimental results show that the apparent resistivity increases as the side and height of the specimen become smaller. Also, it was confirmed that the influence of the size of the specimen on the electrical resistivity measurement was not linear.

Electrical Resistivity Characteristic of Soils (흙의 전기비저항 특성)

  • Park, Sam-Gyu;Kim, Jung-Ho;Cho, Seong-Jun;Yi, Myeong-Jong;Son, Jeong-Sul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.847-854
    • /
    • 2004
  • The resistivity of soils depends on grains size, porosity, water saturation, pore fluid resistivity, caly contents and son on. It is very important to understand the relationship between resistivity and such physical properties of soils, in order to interpret and evaluate ground conditions by using resistivity data obtained from electrical resistivity prospecting. In this paper, to study the relationship between resistivity and physical properties of soils, the resistivity of glass beads and compacted soil samples both in saturated and unsaturated conditions is measured. As the results, the resistivity of saturated soils depends mainly on porosity and clay contents, while that of unsaturated soils is sensitive to compaction conditions, and decreases with increasing water content until the optimum water condition, that is the maximum dry density. But, the relationship between resistivity and water saturation for soils is unique, being independent of compaction energy. Also, the resistivity ratio decrease with increasing water saturation, followed by no significant change of resistivity ratio over 80 percent of water saturation (the optimum water content).

  • PDF

Evaluation of grout penetration in single rock fracture using electrical resistivity

  • Lee, Hangbok;Oh, Tae-Min;Lee, Jong-Won
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • In this study, a new approach using electrical resistivity measurement was proposed to detect grout penetration and to evaluate the grouting performance for such as waterproof efficiency in single rock fracture. For this purpose, an electrical resistivity monitoring system was designed to collect multi-channel data in real time. This was applied to a system for grout injection/penetration using a transparent fracture replica with various aperture sizes and water-cement mix ratio. The electrical resistivity was measured under various grout penetration conditions in real time, which results were directly compared to the visual observation images of grout penetration/distribution. Moreover, the grouting success status after the curing process was evaluated by measuring the electrical resistivity in relation to changes in frequency in fracture cells where grout injection and penetration were completed. Consequently, it was determined that the electrical resistivity monitoring system could be applied effectively to the detection of successful penetration of grouting into a target area and to actual field evaluation of the grouting performance and long-term stability of underground rock structures.

Electrical Conduction Mechanism of SiC-$ZrB_2$ Composites (SiC-$ZrB_2$계(係) 복합체(複合體)의 전기전도기구(電氣傳導機溝))

  • Ju, Jin-Young;Kwon, Ju-Sung;Shin, Yong-Deok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1336-1338
    • /
    • 1997
  • Relations between the composites of SiC-$ZrB_2$ electro-conductive ceramic composites and their electrical resistivity, as well as their temperature, were investigated. The electrical resistivity of hot-pressed composites was measured by the Pauw method in the temperature of RT to $100^{\circ}C$. The electrical resistivity of the composites follow the electrical conduction model for a homogenous mixture of two kinds of particles with different conductivity. Also the electrical resistivity versus temperature curves indicate the formation of local chains of $ZrB_2$ particles. In the case of SiC-$ZrB_2$ composites containing above 30Vol.% $ZrB_2$ showed PTCR, whereas the electrical resistivity of SiC-15Vol.% $ZrB_2$ showed NTCR.

  • PDF

Development of Electrical Resistivity Survey System for Geotechnical Centrifuge Modeling (원심모형실험을 위한 전기비저항 탐사 시스템 구축)

  • Cho, Hyung-Ik;Bang, Eun-Seok;Yi, Myeong-Jong;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.19-31
    • /
    • 2014
  • In order to investigate ground state change visually in physical model during centrifuge testing, electrical resistivity survey was adopted. Commercial resistivity survey equipment verified at various in-situ sites was utilized. The resistivity survey equipment installed in centrifuge facility was remotely controlled through intranet and electrical resistivity images obtained while centrifuge testing was being checked by real-time inversion. To verify the stable operation of the developed resistivity survey system, preliminary tests were conducted. Model ground was uniformly constructed using unsaturated soil and saline water was dropped on the ground surface to simulate contaminant flow situation. During the 10 g centrifuge tests, electrical resistivity was continuously detected and the testing results were compared with those of identically carried out 1 g centrifuge tests. In addition, the electrical resistivity was directly measured immediately after the centrifuge test by open cutting the model. Finally, reliability of electrical resistivity survey in the centrifuge test was verified by comparing those testing results.

A study on the correlation between the result of electrical resistivity survey and the rock mass classification values determined by the tunnel face mapping (전기비저항탐사결과와 터널막장 암반분류의 상관성 검토)

  • 최재화;조철현;류동우;김학규;서백수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.265-272
    • /
    • 2003
  • In this study, the rock mass classification results from the face mapping and the resistivity inversion data are compared and analyzed for the reliability investigation of the determination of the rock support type based on the surface electrical survey. To get the quantitative correlation, rock engineering indices such as RCR(rock condition rating), N(Rock mass number), Q-system based on RMR(rock mass rating) are calculated. Kriging method as a post processing technique for global optimization is used to improve its resolution. The result of correlation analysis shows that the geological condition estimated from 2D electrical resistivity survey is coincident globally with the trend of rock type except for a few local areas. The correlation between the results of 3D electrical resistivity survey and the rock mass classification turns out to be very high. It can be concluded that 3D electrical resistivity survey is powerful to set up the reliable rock support type.

  • PDF

Frequency-dependent electrical parameters of soils as a function of the moisture content (수분함유량에 따른 토양의 전기적 파라미터의 주파수의존성)

  • Lee, Bok-Hee;Kim, Ki-Bok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.68-74
    • /
    • 2014
  • The electrical parameters of soils are highly dependent on the various factors such as types of soil, chemical compositions, moisture content, temperature, frequency, and so on. The analysis of soil parameters is of fundamental importance in design of grounding systems. In this paper, we present the experimental results of frequency-dependent impedance, resistivity, permittivity of soils as functions of types of soil and moisture content. The impedance and resistivity of soils are decreased as the moisture content and the frequency increase. In particular, the variation of the soil resistivity with the frequency is pronounced in the conditions of high resistivity and low moisture content. On the contrary, the permittivity of soils are sharply decreased with increasing the frequency below 10kHz and the frequency-dependent permittivity of soils are highly changed in the conditions of high moisture and low resistivity.

Influence of Micro-Structural Characteristics of Concrete on Electrical Resistivity (콘크리트의 미세구조 특성이 전기저항에 미치는 영향)

  • Yoon, In-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.122-129
    • /
    • 2013
  • Since electrical resistivity of concrete can be measured in a more rapid and simple way than chloride diffusivity, it should be primarily regular quality control of the electrical resistivity of concrete which provides the basis for indirect of quality control of chloride diffusivity during concrete construction. If this is realized, the electrical resistivity of concrete can be a crucial parameter to establish maintenance strategy for marine concrete structures. The purpose of this study is to develop, design and test a surface electrical resistivity measurement protocol. Microstructural affecting factors such as capillary water, porosity, tourtousity, and so on, on the electrical resistivity of concrete were examined taking into account for mixing proportion properties, and hydration stage. This study can provide a non-destructive approach for durability design of marine concrete. From the relationship between electrical resistivity and chloride diffusivity, it is expected that the result is subsequently used as a calibration curve for an indirect control of the chloride diffusivity based on regular measurements of the electrical resistivity during concrete construction.