• Title/Summary/Keyword: Electricity Power Consumption

Search Result 313, Processing Time 0.034 seconds

Empirical Research of Energy Saving based on Measurement of The Consumed Power of University's Electric Vending Machine (친환경자동판매기의 국내 대학교 에너지 소비 개선 효과 - 수도권 대학을 중심으로 -)

  • Kim, Joeng-Hoon;Kim, Jeong-In
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.95-101
    • /
    • 2016
  • This study measured the amount of electricity consumed by the vending machines installed on campus and aim to come up with measures to address excessive consumption of electricity. We chose 10 universities located in the city of Seoul and Gyeonggi province and measured electricity consumption of 10 vending machines installed in each university. We then calculated annual electricity consumption of the machines based on previously calculated electricity consumption of 100 samples. According to the result of the calculation, it is estimated that the machines studied on consume 700 KWh a year. This amount could translate into approximately 3,000 tons of annual carbon emissions and 640 million KRW in annual electricity bills. It was also found that there is a significant difference between ordinary vending machines and machines certified for being eco-friendly and energy efficient, in terms of electric power consumption. It is expected that, if the ordinary machines are replaced with the eco-friendly and high-efficient machines, 640 KWh of electricity, 300 kg of carbon, and 61,640 KRW in electricity bills would be saved, which means 28% saving in energy, emissions and bills. In conclusion, we determined that, as one of the ways to reduce electric power consumption and carbon emissions, old vending machines on campus could be replaced with eco-friendly and high-efficient machines.

A Case Study of Decreasing Environment Pollution Caused by Energy Consumption of a Dormitory Building Which Only Using Electricity by Efficiently Simulating Applying Residential SOFC (Solid Oxide Fuel Cell)

  • Chang, Han;Lee, In-Hee
    • Architectural research
    • /
    • v.21 no.1
    • /
    • pp.21-29
    • /
    • 2019
  • Recent years in Korea, some new developed buildings are only using electricity as power for heating, cooling, bathing and even cooking which means except electricity, there is no natural gas or other kinds of energy used in such kind of building. In vehicle industry area, scientists already invented electric vehicle as an environment friendly vehicle; after that, in architecture design and construction field, buildings only using electricity appeared; the curiosity of the environment impact of energy consumption by such kind of building lead me to do this research. In general, electricity is known as a clean energy resource reasoned by it is noncombustible energy resource; however, although there is no environmental pollution by using electricity, electricity generation procedure in power plant may cause huge amount of environment pollution; especially, electricity generation from combusting coal in power plant could emit enormous air pollutants to the air. In this research, the yearly amount of air pollution by energy using under traditional way in research target building that is using natural gas for heating, bathing and cooking and electricity for lighting, equipment and cooling is compared with yearly amount of air pollution by only using electricity as power in the building; result shows that building that only uses electricity emits much more air pollutants than uses electricity and natural gas together in the building. According to the amount of air pollutants comparison result between two different energy application types in the building, residential SOFC (Solid oxide fuel cell) is simulated to apply in this building for decreasing environment pollution of the building; furthermore, high load factor could lead high efficiency of SOFC, in the scenario of simulating applying SOFC in the building, SOFC is shared by two or three households in spring and autumn to increase efficiency of the SOFC. In sum, this research is trying to demonstrate electricity is a conditioned environment friendly energy resource; in the meanwhile, SOFC is simulated efficiently applying in the building only using electricity as power to decrease the large amount of air pollutants by energy using in the building. Energy consumption of the building is analyzed by calibrated commercial software Design Builder; the calibrated mathematical model of SOFC is referred from other researcher's study.

A Deep Belief Network for Electricity Utilisation Feature Analysis of Air Conditioners Using a Smart IoT Platform

  • Song, Wei;Feng, Ning;Tian, Yifei;Fong, Simon;Cho, Kyungeun
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.162-175
    • /
    • 2018
  • Currently, electricity consumption and feedback mechanisms are being widely researched in Internet of Things (IoT) areas to realise power consumption monitoring and management through the remote control of appliances. This paper aims to develop a smart electricity utilisation IoT platform with a deep belief network for electricity utilisation feature modelling. In the end node of electricity utilisation, a smart monitoring and control module is developed for automatically operating air conditioners with a gateway, which connects and controls the appliances through an embedded ZigBee solution. To collect electricity consumption data, a programmable smart IoT gateway is developed to connect an IoT cloud server of smart electricity utilisation via the Internet and report the operational parameters and working states. The cloud platform manages the behaviour planning functions of the energy-saving strategies based on the power consumption features analysed by a deep belief network algorithm, which enables the automatic classification of the electricity utilisation situation. Besides increasing the user's comfort and improving the user's experience, the established feature models provide reliable information and effective control suggestions for power reduction by refining the air conditioner operation habits of each house. In addition, several data visualisation technologies are utilised to present the power consumption datasets intuitively.

An Analysis of Electricity Consumption Profile based on Measurement Data in Apartment Complex in Daejeon (대전지역 공동주택의 전력소비 실태 및 패턴 분석 연구)

  • Kim, Kang Sik;Im, Kyung Up;Yoon, Jong Ho;Shin, U Cheul
    • KIEAE Journal
    • /
    • v.11 no.5
    • /
    • pp.91-96
    • /
    • 2011
  • This study is to analysis the characteristics of electric power consumption of apartments complex in Korea. This study shows the pattern of electric power consumption and correlation of each apartment complex's completion year monthly and timely. With this result, we are able to predict the demand pattern of electricity in a house and make the schedule by demand pattern. It is expected this data is used as reference of electric consumption of Daejeon area to operate the simulation tools to predict the building energy. The yearly data of 10 apartment complexes of 2010 are analyzed. The results of this study are followed. The averaged amount of electricity consumption in winter is higher as summer because of the high capacity of heating equipment. All of the house has electric base load from 0.26kWh to 0.5kWh. The average of the electricity consumption of month is shown as 310.2kWh. A week is seperated, as 4 part such as week, weekend, Saturday and Sunday. During week, the average of timely electricity consumption is shown as 0.426kWh. The Saturday consumption is 0.437kWh. The Sunday is 0.445kWh. The peak electricity consumption in summer and winter is measured. The peak consumption on summer season is 1.389kW on 22th August 64% higher than winter season 0.887kW on 3rd January.

Survey on the Residential Standby Power Consumption in Korea (한국의 가정용 대기전력 소모현황 조사연구)

  • 김남균;서길수;김상철;김은동
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.472-476
    • /
    • 2004
  • Standby power is the electricity consumed in an electrical equipment when it is switched-off or not performing its main function. Due to the acceleration of digital electronics and home networking, standby power use tends to increase rapidly year by year. In this paper, standby power consumption in residential sector in Korea has been surveyed and reported for the first time. Totally 825 pieces of electrical equipments that consume standby power in 53 households were investigated. The average standby power per equipment and total standby power per household were 3.66W and 57.0W, respectively. Annual standby power consumption per household was estimated 306kWh; which means the standby power consumption in residential sector in Korea can be estimated 4.6TWh a year representing 1.67 percent of total electrical consumption (274TWh).

Group Building Based Power Consumption Scheduling for the Electricity Cost Minimization with Peak Load Reduction

  • Oh, Eunsung;Park, Jong-Bae;Son, Sung-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1843-1850
    • /
    • 2014
  • In this paper, we investigate a group building based power consumption scheduling to minimize the electricity cost. We consider the demand shift to reduce the peak load and suggest the compensation function reflecting the relationship between the change of the building demand and the occupants' comfort. Using that, the electricity cost minimization problem satisfied the convexity is formulated, and the optimal power consumption scheduling algorithm is proposed based on the iterative method. Extensive simulations show that the proposed algorithm achieves the group management gain compared to the individual building operation by increasing the degree of freedom for the operation.

An analysis of the End-User electric power consumption trends using the load curve during international conflict (수용가 부하곡선을 일용한 국제분쟁시 전력사용 행태분석)

  • Son Hak Sig;Kim In Su;Park Yong Uk;Im Sang Kug;Kim Jae Chul
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.165-167
    • /
    • 2004
  • End-user electric power consumption trends shows various load curves dependant on industry, contract, season, day and time. Analysis of end-user electric power consumption trends has a key role to efficiently meet electricity demand. There are several factors of change in electricity demand such as the change of weather, international conflict, and industrial trends during summer. This paper has analyzed the analysis the end-user electric power consumption trends using the load curve during international conflict. We observed that international conflict decreased electric demand by $5.4\%$. This increase is not significant, and therefore we conclude that the international conflict has not greatly affected Korea's electricity demands. This paper provides useful information so as to mon: efficiently perform demand side management.

  • PDF

A Study on the Changing Factors of the Electricity Consuming Pattern in accordance with the change in the Economic Growth Structure (경제성장 구조변화에 따른 전력소비 변화요인 연구)

  • Rhee, Sang-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.151-155
    • /
    • 2005
  • An electricity consumption is closely related to the economic growth structure. The change of economic growth structure affects the pattern of electricity consumption widely and severely. This paper gives that the primary changing factors of electricity growth are economic growth, change of industry structure(the change of electricity consumption ratio in case of residential sector), and the effect of electricity saying. It gives a model to analyze the influence of GDP to the change of electricity consumption patterns by sector through the period of pre and post 1998(IMF, financial crisis) to observe the contribution of each factor to the growth of electricity demand. It is anticipated that this study shows the feasible scheme of economic structure to become the developed country.

  • PDF

A Study on the Program for Estimation of Electric Rates and the Analysis for Power Consumption in Complex Consumer (복합다용도 수용가의 전력소비특성 분석 및 전기요금 산정프로그램 개발)

  • Kim, Se-Dong;Yoo, Sang-Bong;Ki, Yoo-Kyung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.103-107
    • /
    • 2014
  • Together with housings, general buildings and industrial facilities, multi-purpose complexes are equipped with various and special equipment. They are often used by many unspecified people, which causes an increase in annual electricity consumption. Because of this, a great amount of money has been spent for electric charge, far more in excess of the budget, so a reasonable electricity rate needs to be estimated. In this study, we surveyed the power consumption, average power use, and annual electricity bill of multi-purpose complexes in the past five years. To see the general tendency of the survey, we conducted a statistical analysis with such parameters as average, maximum, and minimum values. Through regression analysis, we could see the trend of the survey in linear way. Based on the survey, we have developed an electric-rate calculation program to estimate the next year's budget on electricity.

Forecasting of Electricity Demand for Fishing Industry Based on Genetic Algorithm approach (유전자 알고리즘에 기반한 수산업 전력 수요 예측에 관한 연구)

  • Kim, Heung-Soe;Lee, Sung-Geun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.1
    • /
    • pp.19-23
    • /
    • 2017
  • Energy is a vital resource for the economic growth and the social development for any country. As the industry becomes more sophisticated and the economy more grows, the electricity demand is increasing. So forecasting electricity demand is an important for electricity suppliers. Forecasting electricity demand makes it possible to distribute electricity demand. As the market for Negawatt market began to grow in Korea from 2014, the prediction of electricity consumption demand becomes more important. Moreover, power consumption forecasting provides a way for demand management to be directly or indirectly participated by consumers in the electricity market. We use Genetic Algorithms to predict the energy demand of the fishing industry in Jeju Island by using GDP, per capita gross national income, value add, and domestic electricity consumption from 1999 to 2011. Genetic Algorithm is useful for finding optimal solutions in various fields. In this paper, genetic algorithm finds optimal parameters. The objective is to find the optimal value of the coefficients used to predict the electricity demand and to minimize the error rate between the predicted value and the actual power consumption values.