• Title/Summary/Keyword: Electro-optical conversion device

Search Result 9, Processing Time 0.023 seconds

Optical Modulation Characteristics of Red Organic Light Emitting Diodes for the Application on the Electro-optical Conversion Device (전기-광 변환소자 응용을 위한 적색 유기 EL 소자의 광변조 특성)

  • Kim, Ju-Seung;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.576-581
    • /
    • 2005
  • We fabricated red organic light emitting diodes(OLEDs) utilizing tis(8-hydroxyquinoline) aluminum $(Alq_3)$ doped with $5\%$ of (4-(dicyanomethylene)-2-i-propyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran) (DCJTI) and investigated the driving and modulation characteristics for applying to the electro-optical conversion device. To improve the driving characteristics of red OLEDs, 3 V of offset voltage, which is equal to the turn on voltage, Is applied to the device. Offset voltage enhanced the optical EL output and reduced the rise time of EL waveforms of red OLEDs, and hence the cutoff frequency is increased with increasing applied voltage. The optical pulse of 100 MHz has been obtained from red OLEDs. Therefore, we confirmed that the red OLEDs can be applied to the fields of optical communication as an electro-optical conversion device.

Application to the Electro-Optical Conversion Device of OLEDs (도프형 유기 EL 소자의 전기-광 변환소자 응용)

  • Kim, Ju-Seung;Min, Yong-Gi;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.114-118
    • /
    • 2006
  • We investigated the transient electroluminescence (EL) and modulation characteristics of red organic light-emitting diodes (OLEDs), which consist with 4-(dicyanomethylene)-2-i -propyl-6-(1,1,7,7-tetramethyljulolidyl-9-cnyl)-4H-pyran (DCJTI) and rubrene doped into tris(8-hydroxyquinoline)aluminum ($Alq_3$). The transient EL waveforms showed two components, the overshooting peak and constant component, indicating that the excess amount of accumulated charges simultaneously recombine at the onset moment. This overshooting effect reduced the rise time of transient EL and enhanced the optical output of OLEDs when the pulse voltage applied to the device. We demonstrated that the red OLEDs could be use for the high-speed switching application by driving at more than 100 MHz and transmitting the video signals utilized as the electro-optical conversion device

  • PDF

A Study on the Fabriation of Mode Convertible Optical Filter Utilizing Strain-optic Effect in LiNbO$_{3}$ (LiNbO$_{3}$의 스트레인광학 효과를 이용한 모드변환형 광여파기 제작에 관한 연구)

  • 박석봉;장홍식
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.72-78
    • /
    • 1998
  • Polarization mode converters have been produced by utilizing Ti:LiNbO$_{3}$ channel waveguide and strain-optic effect. Shear strain for periodic perturbations of optical channel waveguides and phase matching can be obtained by an evaporated periodic SiO$_{2}$ thin film at 300.deg. C. The electrodes located on the either side of waveguide provide a means to electro-optically tune the wavelength for maximum polarization conversion via the electrooptic effect. The maximum conversion effeciency was observed at 21.deg. C for V=0 and 46.deg. C for V=30V aro the device having 7 .mu.m waveguide wiith and 350 periodic pads. The dependence of the number of pads on conversion efficiency was observed experimentally.fficiency was observed experimentally.

  • PDF

Polarity Effects of Dielectric Anisotropy on Electro-Optical Characteristics of Fringe Field Twisted Nematic Mode

  • Shin, Sung-Sik;Jhun, Chul-Gyu;Kim, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.288-288
    • /
    • 2009
  • We have studied polarity effects of dielectric anisotropy effects on electro-optical characteristics of a twisted nematic mode driven by fringe electric field, which has wide viewing angle characteristics. Our device is designed as normally black mode between parallel polarizers. The perfect polarization conversion of incident light, which passes through a polarizer, is achieved, when it passes through the twisted liquid crystal (LC) layer. If an electric field is applied, the LC molecules with a positive (or negative) dielectric anisotropy rotate parallel (or perpendicular) to the horizontal component of a fringe electric field as increasing transmittance. From the calculated results, enhanced transmittance of the fringe field-twisted nematic (FF-TN) mode with positive dielectric anisotropy of + 8.2 can be obtained.

  • PDF

2×2Ti:LiNbO3 Integrated Optical Add/Drop Multiplexers utilizing Strain-Optic Effect (스트레인광학효과를 이용한 2×2Ti:LiNbO3 삽입/분기 집적광학 멀티플렉서)

  • Jung, Hong-Sik;Choi, Yong-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.430-436
    • /
    • 2006
  • Polarization-independent $Ti:LiNbO_3\;2{\times}2$ optical add/drop multiplexer for the 1550nm wavelength region is fabricated. The device consists of two input waveguides, two polarization beam splitters. two polarization conversion/electrooptic tuning waveguide sections, and two output waveguides. The single mode channel waveguides for both TE and TM polarizations are fabricated on a x-cut $Ti:LiNbO_3$substrate by Ti diffusion. Spectral section is based on phase-matched polarization conversion due to shear strain induced by a thick $SiO_2$ grating overlay film. An applied voltage tunes the device by changing the waveguide birefringence, hence the optical wavelength at which most efficient polarization conversion occurs. Tuning rate of 0.094nm/V with a maximum range of 17nm has been obtained. The nearest side-lobe is about 8.2dB. The FWHM is 3.72nm.

Development of Click Chemistry in Polymerization and Applications of Click Polymer

  • Karim, Md. Anwarul
    • Rubber Technology
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Click chemistry had enjoyed a wealthy decade after it was introduced by K.B.Sharpless and his co-worker on 2001. Since there is no optimized method for synthesis of click polymer, therefore, this paper introduced three click reaction methods such as catalyst, non-catalyst and azide-end capping for fluorene-based functional click polymers. The obtained polymers have reasonable molecular weight with narrow PDI. The polymers are thermally stable and almost emitted blue light emission. The synthesized fluorene-based functional click polymers were characterized to compare the effect of click reaction methods on polymer electro-optical properties as well as device performance on quasi-solid-state dye sensitized solar cells (DSSCs) applications. The DSSCs with configuration of $SnO_2:F/TiO_2/N719$ dye/quasi-solid-state electrolyte/Pt devices were fabricated using these click polymers as a solid-state electrolyte components. Among the devices, the catalyzed click polymer composed device exhibited a high power conversion efficiency of 4.62% under AM 1.5G illumination ($100mW/cm^2$).These click polymers are promising materials in device application and $Cu^I$-catalyst 1, 3-dipolar cycloaddition click reaction is an efficient synthetic methodology.

  • PDF

Electro-optical properties of organic EL device (유기 EL 소자의 전기-광학적 특성)

  • Kim, Min-Soo;Park, Lee-Soon;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.252-257
    • /
    • 1997
  • Organic EL devices, which have the sing3e-layer structure of ITO(indium-tin-oxide) /PPV(poly(p-phenylene vinylene))/cathode and the double-layer structure of ITO/PVK (poly(N- vinylcarbazole)) /PPV/cathode, were fabricated and their electro-optical properties were investigated. Experimental results, in single-layer structure, shown that the increment of temperature for thermal conversion of PPV film from $140^{\circ}C$ to $260^{\circ}C$ decreases the maximum luminance from $118.8\;cd/m^{2}$(20V) to $21.14\;cd/m^{2}$(28V) and shift the maximum peak of EL spectrum from 500nm to 580nm. The lower the work function of cathode is, the more the luminance and injection current of device. In double-layer structure, as the concentration of PVK solution decreases from 0.5 wt% to 0.05 wt%, the luminance of device increases from $70.71\;cd/m^{2}$(32V) to $152.7\;cd/m^{2}$(26V).

  • PDF

Emitter Electrode Design to Optimize the Optical and Electrical Characteristics of Planar Solar Cells (평판형 태양 전지의 광학 및 전기적 특성 최적화를 위한 에미터 전극 설계 연구)

  • Lee, Sangbok;Do, Yun Seon
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • In this study, we propose a design method to optimize the electro-optical efficiency of a planar solar cell structure by adjusting one-dimensionally periodic emitter electrodes. Since the aperture ratio of the active layer decreases as the period of the emitter electrode decreases, the amount of light absorption diminishes, affecting the performance of the device. Here we design the optimal structure of the periodic emitter electrode in a simple planar solar cell, by simulation. In terms of optics, we find the condition that shows optical performance similar to that of a reference without the emitter electrode. In addition, the optimized electrode structure is extracted considering both the optical and electrical efficiency. This work will help to increase the utilization of solar cells by suggesting a structure that can most efficiently transfer charge generated by photoelectric conversion to the electrodes.

[ $a-Si:H/{\mu}c-Si:H$ ] thin-film tandem solar cells (비정질/마이크로 탠덤 구조형 실리콘 박막 태양전지)

  • Lee, Jeong-Chul;Song, Jin-Soo;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.228-231
    • /
    • 2006
  • This paper briefly introduces silicon based thin film solar cells: amorphous (a-Si:H), microcrystalline ${\mu}c-Si:H$ single junction and $a-Si:H/{\mu}c-Si:H$ tandem solar cells. The major difference of a-Si:H and ${\mu}c-Si:H$ cells comes from electro-optical properties of intrinsic Si-films (active layer) that absorb incident photon and generate electron-hole pairs. The a-Si:H film has energy band-gap (Eg) of 1.7-1.8eV and solar cells incorporating this wide Eg a-Si:H material as active layer commonly give high voltage and low current, when illuminated, compared to ${\mu}c-Si:H$ solar cells that employ low Eg (1.1eV) material. This Eg difference of two materials make possible tandem configuration in order to effectively use incident photon energy. The $a-Si:H/{\mu}c-Si:H$ tandem solar cells, therefore, have a great potential for low cost photovoltaic device by its various advantages such as low material cost by thin-film structure on low cost substrate instead of expensive c-Si wafer and high conversion efficiency by tandem structure. In this paper, the structure, process and operation properties of Si-based thin-film solar cells are discussed.

  • PDF