• Title/Summary/Keyword: Electrode force

Search Result 358, Processing Time 0.022 seconds

Normalized Contact Force to Minimize "Electrode-Lead" Resistance in a Nanodevice

  • Lee, Seung-Hoon;Bae, Jun;Lee, Seung Woo;Jang, Jae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2415-2418
    • /
    • 2014
  • In this report, the contact resistance between "electrode" and "lead" is investigated for reasonable measurements of samples' resistance in a polypyrrole (PPy) nanowire device. The sample's resistance, including "electrode-lead" contact resistance, shows a decrease as force applied to the interface increases. Moreover, the sample's resistance becomes reasonably similar to, or lower than, values calculated by resistivity of PPy reported in previous studies. The decrease of electrode-lead contact resistance by increasing the applying force was analyzed by using Holm theory: the general equation of relation between contact resistance ($R_H$) of two-metal thin films and contact force ($R_H{\propto}1/\sqrt{F}$). The present investigation can guide a reliable way to minimize electrode-lead contact resistance for reasonable characterization of nanomaterials in a microelectrode device; 80% of the maximum applying force to the junction without deformation of the apparatus shows reasonable values without experimental error.

Wire-tension Control System using Photo-interrupter Sensor and Micro-electrode Fabrication (광단속센서를 이용한 와이어장력 제어장치 및 마이크로전극 제조)

  • Kang, Myung Chang;Lee, Chang Hoon;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.28-35
    • /
    • 2013
  • Micro electrical discharge machining (EDM) as a non-contact machining process is very effective for micromachining with a thin electrode because of its low machining reaction force. The micro-electrode machining device has the advantage of maintaining high precision through the whole processes and uses a feeding wire in the thin electrode tool manufacturing process. This study describes the design and evaluation of a micro-electrode machining device using optical photo-interrupter. The electrode was fabricated by reverse electrical discharge machining. The performance of designed system was evaluated to measure tension force according to feed speed of wire. This system for micro electrode fabrication proves the feasibility in the micro-EDM process of the micro holes and parts for industrial applications.

Improved electrode pattern design for lateral force increase in electrostatic levitation system

  • Woo, Shao-Ju;Jeon, Jong-Up;higuchi, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.311-314
    • /
    • 1996
  • In contactless disk handling systems based on electrostatic suspension in which the stator is to be transferred, the limited stiffness in lateral direction severely restricts the achievable translational acceleration. In existing stator electrode pattern designs, the magnitude of the lateral force is determined by the magnitude of the control voltages which are applied to the individual electrodes to levitate the disk stably. As a result, the lateral force cannot be set arbitrarily. A new stator electrode pattern is presented for the electrostatic levitation of disk-shaped objects, in particular silicon wafers and aluminum hard disks, which allows the lateral forces to be controlled independently from the levitation voltages. Therefore, greater lateral forces can be obtained, compared with the existing stator designs. Experimental results will be presented for a 4-inch silicon wafer that clearly reveal the increased lateral stiffness by using the proposed stator electrode compared to the conventional electrode pattern.

  • PDF

ANALYSIS AND EXPERIMENT OF DIELECTROPHORETIC FORCE ON A CELL IN A PLANAR ELECTRODE STRUCTURE (초소형 평면 전극 구조에서 세포에 작용하는 DIELECTROPHORETIC FORCE의 해석 및 실험)

  • Choi, Jung-Hoon;Lee, Sang-Wook;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.597-599
    • /
    • 1995
  • We have analyzed the dielectrophoretic(DEP) force on a cell in a micro planar electrode structure. We fabricate a micro planar electrode structure using micro machining technology and measure the motion of a cell that is accelerated by DEP force. DEP force on a cell is calculated by curve fitting the motion of a cell. Radish and yeast are used for the experiment. In case of radish, DEP force is increased as the voltage and the frequency is increased, and in case of yeast, DEP force is increased only as the voltage is increased DEP force on a yeast does not vary when the frequency varies from 1 MHz to 3 MHz. The result will be helpful to the manipulation of cells using DEP force.

  • PDF

A Comparison of Spot Weldability with Electrode Force Changes in Surface Roughness Textured Steel (가압력 변화에 따른 표면조도처리 강판의 저항 점 용접성 비교)

  • Park, Sang-Soon;Park, Yeong-Do;Kim, Ki-Hong;Choi, Yung-Min;Rhym, Young-Mok;Kang, Nam-Hyun
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.75-84
    • /
    • 2008
  • With the development of surface roughness textured steel for automotive body-in-white assemble, one of key issues is to understand the role of the surface roughness in textured steel sheets. To investigate effect of surface roughness on weldability in prepared steels, electrode force was varied. Steel sheets (T-H) with high surface roughness ($Ra\;=\;1.94\;{\mu}m$) reduced electrode life. It was attributed to the higher contact resistance at the electrode-sheet interface in the presence of the high surface roughness. The increased electrode diameter decreased current density, therefore reducing weld electrode life due to small weld button size. When an increased electrode force was used, a significant increase in the electrode life was observed in welding of high surface roughness steel sheet. This study suggested that contact resistance at the electrode-sheet interface was the dominant factor, as compared to the sheet-sheet interface for determining electrode life in welding of surface roughness textured steel.

A Microcatuator for High-Density Hard Disk Drive Using Skewed Electrode Arrays (경사 전극 배열을 이용한 고밀도 하드 디스크의 마이크로 구동부 제작)

  • Choi, Seok-Moon;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.6-15
    • /
    • 2011
  • This paper reports the design and fabrication of a micro-electro-mechanical-system(MEMS)-based electrostatic angular microactuator for a dual-stage servo. The proposed actuator employs a novel electrode pattern named "skewed electrode array(SEA)" scheme. It is shown that SEA has better linearity than a parallel plate type actuator and stronger force than a comb-drive based actuator. The moving and the fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, an electrostatic FE analysis was carried out and an empirical force model was established for SEA. A new assembly method which will allow the active electrodes to be located beneath the slider was developed. The active electrodes are connected by inner and outer rings lifted on the base substrate, and the inner and outer rings are connected to platform on which the slider locates. Electrostatic force between active electrodes and platform can be used for exiting out of plane modes, so this provides the possibility of the flying height control. A microactuator that can position the pico-slider over ${\pm}0.5{\mu}m$ using under 20 volts for a 2 kHz fine-tracking servo was designed and fabricated using SoG process.

  • PDF

The Electromagnetic Repulsion Force Analysis of Multipolar Axial Magnetic Field type Electrodes for Vacuum Interrupter (진공인터럽터용 다극 종자계전극의 전자반발력 해석)

  • Kim, Sung-Il;Park, Hong-Tae;Ahn, Hee-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.95-97
    • /
    • 1999
  • This paper describes electromagnetic repulsion force of multipolar axial magnetic field type electrodes for vacuum interrupter used in vacuum circuit breaker. It was distinguished that repulsion force of multipolar axial magnetic field type electrode in consideration of eddy current effect between upper electrode and lower electrode by finite element method. And it was found out that suitable contact weight of multipolar axial magnetic field type electrode for vacuum circuit breaker from repulsion force analysis results by finite element method.

  • PDF

An Investigation of Welding Variables on Resistance Upset Welding for End Capping of HWR Fuel Elements (중수로 핵연료 봉단마개의 저항업셋 용접을 위한 용접변수)

  • 이정원;박춘호;고진현;정성훈;정문규
    • Journal of Welding and Joining
    • /
    • v.7 no.2
    • /
    • pp.60-69
    • /
    • 1989
  • The present study was aimed at investigating the effect of welding parameters such as welding current, electrode force(or squeeze force) and parts cleaning on the sound weld, and establishing the most reliable weld conditions for HWP(Heavy Water Reactor) fuel end capping with the resistance upset butt welding. Major results obtained are as follows. 1. The amount of sound weld was increased with increasing weld current(5.0-11KA) because the activated diffusion with increasing heat generation played an important role in eliminating the porosity and weld line in the weld interface. 2. It was found that weld current was not significantly influenced by the electrode force although the increase of it caused a slight increase of weld current and upset deformation. 3. Acetone rinsing before drying for the Zircaloy-4 end cap cleaning produced the reliable sound weld because it would remove the remaining solvent and surface films, and provided the uniform contact between the end cap and the tube. 4. The optimum welding conditions for fuel end capping by a resistance upset hytt welding are obtained as follows. weld current: 10-11KA, electrode force: 62-90KPa parts cleaning: vapor degreasing.rarw.water, acetone rinsing.rarw.drying.

  • PDF

The Effect of Process Parameter on the Symmetry of Nugget in Micro-resistance Series Spot Welding (정밀저항시리즈 점용접에서 너깃의 대칭성에 미치는 공정변수의 영향)

  • 조상명;김송미
    • Journal of Welding and Joining
    • /
    • v.19 no.6
    • /
    • pp.622-629
    • /
    • 2001
  • The aim of this experiment is to establish the method that obtains symmetrically two nuggets in microresistance series spot welding. The sheets of austenite stainless steel STS304 applied to various electronic parts were experimented by the inverter welding power source of polarity controllable type and by the twin head for left and right electrode force to be controlled separately. The experimental results were obtained as follows : 1) When series spot welding was carried out by DC 1 pulse as welding current with same electrode force at left and right, the asymmetry of nuggets was resulted from the larger nugget of the (-) pole because of the Peltier effect. The dynamic resistance of weld spot at left and right was appeared differently according to the growth of nuggets. 2) When AC 1 cycle by welding power source of polarity controllable type was applied, the nuggets were almost symmetrically formed. 3) In a twin head, if the electrode force of (-) pole was larger than that of (+) pole, the diameters of two nuggets became to same. It was confirmed that the dynamic resistance of (-) pole was decreased to the same level as it of (+) pole. 4) Although the forces of left and right electrode were same, and only DC 1 pulse was applied, symmetric nuggets were obtained if the conductivity of (+) pole was lower than it of (-) pole.

  • PDF

A Study on the Holding of LED Sapphire Substrate Using Alumina Electrostatic Chuck with Fine Electrode Pattern (미세 전극 패턴을 갖는 알루미나 정전척을 이용한 LED용 사파이어 기판 흡착 연구)

  • Kim, Hyung-Ju;Shin, Yong-Gun;Ahn, Ho-Kap;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.4
    • /
    • pp.165-171
    • /
    • 2011
  • In this work, handling of sapphire substrate for LED by using an electrostatic chuck was studied. The electrostatic chuck consisted of alumina dielectric, which was doped with 1.2 wt% $TiO_2$. As the volume resistivity of alumina dielectric was decreased, the electrostatic force was increased by Johnsen-Rahbek effect. The narrower width and gap size of electrode led to the stronger electrostatic force. When alumina dielectric with $3.20{\times}10^{11}{\Omega}{\cdot}cm$ resistivity and 3 mm width/1.5 mm gap sized electrode was used, the strongest electrostatic force in this work was obtained, which value reached to ~14.46 gf/$cm^2$ at 2.5 kV for 4-inch sapphire substrate. This results show that alumina electrostatic chuck with low resistivity and fine electrode pattern is suitable for handling of sapphire substrate for LED.