• Title/Summary/Keyword: Electrolytic reduction water

Search Result 33, Processing Time 0.025 seconds

Dyeability and Antibacterial Activity of Ginkgo Biloba Leaf Extract Using Three Kinds of Aqueous Extraction Solvents. (세가지 수계 추출 용매를 사용한 은행잎 추출액의 염색성 및 항균성)

  • 김정임;최영희;권오경
    • Textile Coloration and Finishing
    • /
    • v.16 no.2
    • /
    • pp.8-14
    • /
    • 2004
  • The purpose of this study was to investigate dyeing properties and antibacterial activities of cotton and silk fabrics treated with Ginkgo biloba leaf extracted with three kinds of aqueous solvents: distilled water, electrolytic reduction water and electrolytic oxidation water. The optimum dyeing condition of Ginkgo biloba leaf was 120 min at 8$0^{\circ}C$. Electrolytic reduction water had the highest dyeability to both cotton and silk compared with electrolytic oxidation water and distilled water. A color of extract by distilled water and electrolytic oxidation water showed yellowish Yellow Red, extract by electrolytic reduction water showed reddish Yellow Red. Irrespective of kinds of extraction solvents, appropriate acidity of medium was pH 9∼11 and pH 3 for cotton and silk fabrics, respectively. Colorfastness to laundering and Light fastness showed generally low but crocking fastness was excellent. Antibacterial activities of the treated fabrics above were 99.9%.

Weight Reduction Properties of PET Fabrics Treated with Electrolytic Reduction Water (전해환원수에 의한 폴리에스테르 직물의 감량가공 특성)

  • Ro Duck-Kil;Hong Young-Ki;Bae Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.17 no.5 s.84
    • /
    • pp.37-44
    • /
    • 2005
  • The electrolytic water(EW) has been used in agriculture, medical, semiconductor, and household fields. However there has been no use of EW in the textile process so far, because the application in the textile industry has been needed a large amount of EW in real process conditions. Recently, we have got electrolytic oxidation water(EOW) and electrolytic reduction water(ERW) by development of a electricity electron technology. And, the productivity of EW manufacture apparatus is arrived to large capacity. As a result, the application of EW could be possible in the textile industry. In this study, to confirm the possibility of application of EW, we scoured and hydrolyzed PET fabric using the EW. It was possible that the application of ERW for the scouring and hydrolysis of PET fabrics in the textile process.

The Degumming and Sericin Recovery of the Silk fabric Using the Electrolytic Water(II) (전해수를 이용한 견섬유 정련 및 세리신 회수(II)-분리막에 의한 세리신 농축을 중심으로-)

  • 배기서;이태상;노덕길;홍영기
    • Textile Coloration and Finishing
    • /
    • v.16 no.4
    • /
    • pp.10-18
    • /
    • 2004
  • In this work, Aqueous sericin solution was prepared by degumming process with electrolytic reduction water. Then, the microfiltration and ultrafiltration systems were applied to the concentration of aqueous sericin solution. The objective of this study was to select the optimum operating condition among the different pressure. The permeate flux and rejection ratio were observed with time, pressure, flow rate and concentration. and, the wastewater and permeated water quality values such as pH, BOD, COD, and NH levels were measured. In order to see the influence of electrolytic reduction water, the flux of pure water and electrolytic reduction water by PVDF22(MF) and PS100(UF) membrane was measured. In microfiltration system, the relative flux reduction decreased rapidly to 0.02 in the 30min, as the concentration polarization and gel layer formation were increased. and then the sericin concentration rejection ratio was 40%. In ultrafiltration system, the permeate flux decreased with time and concentration, and increased with the operating pressure and flow rate. Optimal condition in PS100 membrane system for sericin concentration was operating pressure 1.464kgf/$cm^24, operating flow rate $7\ell/min at\; 40^{\circ}C$. At that time, sericin concentration rejection ratio was 83% respectably. The sericin solution was concentrated from 0.1wt% solution to 0.2 wt % solution during about 2 hrs by the UF filteration membrane system.

Dyeability and Antibacterial Activity of the Fabrics with Elm-Bark Extracts (느릅나무 껍질 추출액에 의한 섬유의 염색성 및 항균성)

  • 최영희;권오경;문제기
    • Textile Coloration and Finishing
    • /
    • v.15 no.3
    • /
    • pp.140-145
    • /
    • 2003
  • The purpose of this study is searching the Elm-Bark dyes' dyeability and antibacterial activities according to the dyeing time, pH, a mordant and the method of mordancy. We used two kinds of Elm-Bark dyes which's extracted by the Electrolytic reduction water and Distilled water. Silk fabric and Cotton/nylon union fabric was used for this study. The results are as follow. K/S value is increased according to the dyeing time and the suitable pH level is pH 3. Dyeability is good with Iron(II) sulfate$(FeSO_4\cdot{7H}_2O)$ on the pre-mordancy and Potassium dichromate$(K_2Cr_2O_7)$ on the post-mordancy. The Elm-Bark dyes by the Electrolytic reduction water has good colorfastness more than by the Distilled water. Antibacterial activities is excellent and the ratio is over than 99.5%.

Characteristics of Strong Alkaline Electrolyzed Water Produced in All-in-one Electrolytic Cell (일체형 전해조에서 생산된 강알카리성 전해수의 특성)

  • Lee, Ho Il;Rhee, Young Woo;Kang, Kyung Seok
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.446-450
    • /
    • 2012
  • Strong alkaline electrolyzed water which is produced in cathode by electrolyzing the solution where electrolytes (NaCl, $K_2CO_3$ etc.) are added in diaphragm electrolytic cell, is eco-friendly and has cleaning effects. So, it is viewed as a substitution of chemical cleaner. In addition, strong alkaline electrolyzed water is being used by some Japanese automobile and precision parts manufacturing industries. When strong alkaline electrolyzed water is produced by using diaphragm electrolytic cell, it is necessarily produced at the anode side. Since strong acidic electrolyzed water produced is discarded when its utilization cannot be found, production efficiency of electrolyzed water is consequently decreased. Also, there is a weakness electrolytic efficiency is decreasing due to the pollution of diaphragm. In order to overcome this, non-diaphragm all-in-one electrolytic cell integrated with electrode reaction chamber and dilution chamber was applied. Strong alkaline electrolyzed water was produced for different composition of electrolytes, and their properties and characteristics were identified. In comparing the properties between strong alkaline electrolyzed water produced in diaphragm electrolytic cell and that produced in all-in-one electrolytic cell, the differences in ORP and chlorine concentration were found. In emulsification test to confirm surface-active capability, similar results were obtained and strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell was identified to be useable as a cleaner like strong alkaline electrolyzed water produced in diaphragm electrolytic cell. Strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell is thought to have sterilizing power because it has active chlorine which is different from strong alkaline electrolyzed water produced in diaphragm electrolytic cell.

MOLTEN SALT VAPORIZATION DURING ELECTROLYTIC REDUCTION

  • Hur, Jin-Mok;Jeong, Sang-Moon;Lee, Han-Soo
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.73-78
    • /
    • 2010
  • The suppression of molten salt vaporization is one of the key technical issues in the electrolytic reduction process developed for recycling spent nuclear fuel from light-water reactors Since the Hertz-Langmuir relation previously applied to molten salt vaporization is valid only for vaporization into a vacuum, a diffusion model was derived to quantitatively assess the vaporization of LiCl, $Li_2O$ and Li from an electrolytic reducer operating under atmospheric pressure. Vaporization rates as a function of operation variables were calculated and shown to be in reasonable agreement with the experimental data obtained from thermogravimetry.

The Degumming and Sericin Recovery of the Silk fabric Using the Electrolytic Water (전해수를 이용한 견섬유 정련 및 세리신 회수 (I))

  • 배기서;하헌주;박광수
    • Textile Coloration and Finishing
    • /
    • v.14 no.4
    • /
    • pp.249-258
    • /
    • 2002
  • Natural silk is formed by two proteins : the crystalline fibroin (inside the silk thread) and amorphous sericin (as a tube outside the thread). The degumming process is used to eliminate the external sericin prior to dyeing ; generally it makes use of soaps at about pH 10. Sericin is the protein constituent that "gums"together the fibroin filaments of cocoon silk. It constitutes about 25% of the weight of the cocoon, is soluble in hot water and "gels" on cooling. The removal of sericin from raw silk, known as degumming, is a simple but important process usually employing hot dilute soap or alkaline solution and occasionally dilute acids or enzymic methods. During degumming, alkali is taken up by the sericin and the free acid from the soap is formed ; this may be deposited on the fiber, reducing the rate of degumming and protecting it from hydrolysis. Alkali is often added to maintain or restore the pH of the baths, but it is rarely used alone, since it leaves the silk rather harsh in handle. If complete sericin removal is required as for printing, sodium carbonate may be added. If the pH of the bath exceeds 11, the fibroin is attacked. Recently, According to the development of electrolysis, we can be obtained the electrolytic reduction water(above pH 11.5) and electrolytic oxidation water (below pH 3). The aim of this work was to study a degumming process using electrolytic water and a possibility of sericin recovery. The new degumming process used electrolytic water operates at $95^\circ{C}$ for 2hr. without any reagents. The wastewater of this process are formed by a solution of sericin in water. This conditions suggest the study of a possible recovery of this protein (sericin) which has an amino acid composition suitable for many used in cosmetics, textile finishing agents, animal feeding, etc. The degumming process using electrolytic water is available to reduce treatment costs and pollute and at the same time to recover sericin.

Effective Electrolytic Water Generation Characteristics by Overlapped Multi-layer Electrode (중첩형 다단전극에 의한 효율적인 전해 이온수 발생 특성)

  • Shin, Dong-Hwa;Hwang, Deok-Hyun;Jung, Jae-Seung;Kim, Hyung-Pyo;Kim, Jin-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.59-64
    • /
    • 2016
  • Applications of electrolytic ion water generated by the oxidation-reduction have gradually been expanded due to their strong sterilizing power and a surface active force. We demonstrate the effect of the multi-layer type electrode for effective ion water generation. The multi-layer type electrode has ability to generate stronger acid and alkali water by increase of the electrode reactive area. Also power consumption efficiency enhances because the electrodes disposed in middle position of the reactive cell raise the usage rate by overlapped effect as an electrolysis electrode.

Treatment of Ballast Water By Filtration -Ultraviolet radiation-Electrolytic Process (FUE 공정에 의한 Ballast Water처리)

  • 박상호;김억조;박성진;김인수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.2
    • /
    • pp.23-27
    • /
    • 2002
  • Reballasting at sea, as recommended by the IMO guidelines, currently provides the best-available measure to reduce the risk of transfer of harmful aquatic organisms, but is subject to serious ship-safety limits. It is therefore extremely important that alternative, effective ballast water management and treatment methods are developed as soon as possible, to replace reballasting at sea. Filtration-Ultraviolet radiation-Electrolytic process (FUE) was evaluated for disinfection of seawater used In ballast water Optimal current density and UV light intensity were 2.0A/dm$^2$ and, 220㎼/$\textrm{cm}^2$/m with which 100% reduction time was 2sec in a Ultraviolet radiation-Electrolytic process. This study showed that FUE process was effective for the disinfection of commonly isolated bacteria and bacillus from ballast water.

  • PDF

The Study of Characteristics of Electrolytic Water (전해수의 특성에 관한 연구)

  • Lee, Chan-Woo;Bae, Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.18 no.6 s.91
    • /
    • pp.43-48
    • /
    • 2006
  • Electrolytic water(EW), studied in recent decades in the Japan, Russia and United State of America, have shown promise as a method of disinfection whereby low levels of free chlorine, sodium hypochlorite, or hypochlorous acid may be produced in situ in Nacl-containing solution. These methods have shown promise in destruction of microorganisms in medical, dental environment, and in the agriculture and food industry. A recently EW treatment system was evaluated for reducing scouring agent and other surfactants in the washing and scouring process of textile industry Unfortunately, there is, to my knowledge, no serious studies of the properties of EW for textile industry In order to study the characteristics of EW and confirm the possibility of applications in textile industry processes, the pH, surface activity, penetration force, surface tension, and contact angle of EW was measured under various conditions. In general terms, What all this shows is that there is fundamental difference between the properties of EW and that of distilled water.