• 제목/요약/키워드: Electromagnetic Forces

검색결과 170건 처리시간 0.028초

500MW 급 대형 발전기 권선단부의 전자기력과 동특성 해석 (Analysis of Vibration and Electromagnetic Forces on a Generator End-winding for 500 MW Fossil Power Plant)

  • 김철홍;주영호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.826-831
    • /
    • 2001
  • Electromagnetic forces generate vibrations in the end-winding of large generators. A finite element analysis using a commercial S/W is performed to calculate electromagnetic force of end-winding in two pole generator for 500 MW fossil power plant. Also, this paper presents analytical and experimental modal analysis results of generator end- winding. Using validated FE model, 3D electromagnetic model which computes the forces on the end-winding is coupled with a 3D mechanical model which calculates the dynamic displacement and stress under electromagnetic forces. These results will be used to evaluate reliability of end-winding and applied to update model.

  • PDF

전자계-기계계 결합해석에 의한 건식변압기의 단락강도 예측 (Short Circuit Electromagnetic Force Prediction by Coupled Electromagnetic-Mechanical Field Analysis of Dry-Type Transformer)

  • 안현모;한성진
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.301-308
    • /
    • 2011
  • This paper deals with the coupled electromagnetic-mechanical field analysis for short-circuit electromagnetic force of the dry-type transformer. The short-circuit currents are calculated using external circuit in accordance with short-circuit test equipment. According to short-circuit current, the generated magnetic leakage flux density in dry-type transformer model is calculated by finite element method. The radially-directed electromagnetic forces in windings are calculated using electromagnetic field analysis and then axially-directed electromagnetic forces in windings are calculated using electromagnetic-mechanical field analysis. The calculated axially-directed electromagnetic forces in high voltage winding are compared to those of measured ones and showed good agreement with experimental results.

횡 방향 진동하는 전자기력에 대한 공간 발달하는 난류 경계층의 반응 (Response of Spatially Developing Turbulent Boundary Layer to Spanwise Oscillating Electromagnetic Force)

  • 이중호;성형진
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1189-1198
    • /
    • 2005
  • Direct numerical simulations were performed to investigate the physics of a spatially developing turbulent boundary layer flow subjected to spanwise oscillating electromagnetic forces in the near wall region. A fully implicit fractional step method was employed to simulate the flow. The mean flow properties and the Reynolds stresses were obtained to analyze the near-wall turbulent structure. It is found that skin friction and turbulent kinetic energy can be reduced by the electromagnetic forces. The decrease in production is responsible fur the reduction of turbulent kinetic energy. Instantaneous flow visualization techniques were used to observe the response of streamwise vortices and streak structures to spanwise oscillating forces. The near-wall vortical structures are affected by spanwise oscillating electromagnetic forces. Following the stopping of the electromagnetic force, the flow eventually relaxes back to a two-dimensional equilibrium boundary layer.

불평형 전자기력을 고려한 유도전동기 회전자의 불평형 응답해석 (Unbalance Response Analysis of Induction Motor Rotor Considering Unbalanced Electromagnetic Forces)

  • 손병구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.201-209
    • /
    • 1999
  • This paper presents a general analytical method for analyzing mechanical unbalance response of unbalanced electromagnetic forces produced in induction motors with an eccentric rotor and a phase unbalance. The equations to be solved are a set of second order differential equations which give matrices with periodic coefficients that are a function of time due to the unbalanced electro-magnetic force. Unbalance response is processed by Newmark $\beta$ method. Two examples are given including an industrial application. The results show that the method proposed is satisfactory.

  • PDF

브러시레스 전동기에서 전자기적 가진력 및 열에 의한 기계적 음력해석 (Analysis of Mechanical Stress Due to Magnetic Force and Thermal Expansion in Brsushless Motor)

  • 하경호;홍정표;이근호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권5호
    • /
    • pp.221-227
    • /
    • 2002
  • This paper deals with the mechanical stress analysis due to electromagnetic forces and the optimal design of the link considering the stress. The link in Interior Permanent Magnet Brushless Motor(IPM) have influence on both mechanical and magnetic performance. The decrease of the link thickness serves to improve the torque, whereas this decreases the strength of link. Therefore, it is necessary to determine the appropriate link thickness considering electromagnetic forces and thermal expansion. The effects of the variation of link thickness on the mechanical stress and the electromagnetic performance are analyzed by the structural and electromagnetic Finite Element Method. In addition, the mechanical structure design of the link is performed to reinforce the mechanical strength against magnetic forces while preserving a food magnetic torque.

대형 화력 발전용 발전기 권선단부의 전자기력에 의한 진동 해석 (Vibration Analysis of the End-winding of Large Generator for Fossil Power Plant under Electromagnetic Excitation)

  • 김철홍;주영호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.350-355
    • /
    • 2003
  • This paper presents results of vibration analysis of a end-winding of large generator for fossil power plant. A finite element analysis using a commercial S/W is performed to calculate alternating electromagnetic forces, mainly of 120㎐ in 60㎐ machines, acting on the end-winding, and then to calculate forced response of the end-winding under electromagnetic forces. Also, this paper presents analytical and experimental modal analysis results of generator end-winding to validate FE model. We calculated forced response of end-winding on 120㎐, double rotating frequency. These results will be used to evaluate structural reliability of end-winding and applied to update model.

  • PDF

전자력을 받는 외팔보의 비선형진동 (Nonlinear Vibration of a Cantilever Beam Subjected to Electromagnetic Forces)

  • 최연선;서경석;우영주
    • 대한기계학회논문집A
    • /
    • 제27권1호
    • /
    • pp.48-57
    • /
    • 2003
  • This study presents nonlinear vibration of a cantilever beam subjected to electromagnetic forces. The dynamic responses of the beam show various nonlinear phenomena with the variation of the system parameters, such as the jump phenomenon, multiple solutions, and the movement of the natural frequency. In this study the nonlinear stiffness due to electromagnetic forces which depends on air gap size is measured experimentally, and the system is modeled by a single degree of freedom nonlinear dynamic system and solutions are solved numerically. The numerical results show good agreements with the experimental results, which demonstrate the nonlinearity of electromagnetic force. Finally the occurrences of the jump phenomenon and the first, second and fourth harmonic components are confirmed in using the method of multiple scales.

불평형 전자기력에 의한 유도전동기 회전자의 안정성해석 (Stability Analysis of Induction Motor Rotor by Unbalanced Electromagnetic Forces)

  • 양보석;손병구
    • 소음진동
    • /
    • 제8권6호
    • /
    • pp.1086-1092
    • /
    • 1998
  • This paper presents a general analytical method for analyzing the instability of unbalanced electromagnetic forces produced in induction motors with an eccentric rotor. The equations to be solved are a set of second order differential equations which give matrices with periodic coefficients that are a function of time due to the unbalanced electromagnetic force. The method is based on an extension of the Floquet theory. A transfer matrix over one period of the motion is obtained. and the stability of the system can be determined with the eigenvalues of the matrix. The analysis results of instability zone were coincided upon comparing that of transfer matrix method with that of rotating frame. Two examples are given. including an industrial application. The results show that the method proposed is satisfactory.

  • PDF

단일권선으로 구성된 반발식 자기부상시스템의 전자력특성 (Characteristics of Electromagnetic Forces of a Single winding EDS MAGLEV System)

  • 홍순흠;차귀수;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.62-64
    • /
    • 1995
  • This paper describes the characteristics of electromagnetic forces of Combined superconducting maglev system. Generation of the levitation, the propulsion and the guidance force by a single coil is proved by the phasor- analysis. It is also shown that double-layered configuration has better characteristics in efficiency, pulsation of the forces and drag ratio than single-layered configuration.

  • PDF

Comparison of Biot-Savart's Law and 3D FEM in the Study of Electromagnetic Forces Acting on End Winding

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.369-374
    • /
    • 2011
  • An induction motor operated with high voltage source generally generates high current in starting mode and has a long transient time after being started. This large and sustaining starting current causes the end windings of the stator to have excessive electromagnetic force. This force is the source of vibration and has a negative and serious influence on the insulation of end windings. Therefore, designing the end winding part with an appropriate support system is needed. To design the support ring enclosing the end windings, we analyze the distribution of electromagnetic force on the end windings by applying the Biot-Savart's law and the 3D finite element method (FEM), and comparing two simulation methods. Finally, we verify the safety of the support structure of the end winding part using stress analysis, which is analyzed with the electromagnetic forces from the 3D FEM simulation.