• Title/Summary/Keyword: Electron Shielding

Search Result 99, Processing Time 0.021 seconds

Evaluation of Shielding Performance of Tungsten Containing 3D Printing Materials for High-energy Electron Radiation Therapy (고에너지 전자선 치료 시 텅스텐 함유 3D 프린팅 물질의 차폐 성능 평가)

  • Yong-In Cho;Jung-Hoon Kim;Sang-Il Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.641-649
    • /
    • 2023
  • This study compares and analyzes the performance of a shield manufactured using 3D printing technology to find out its applicability as a shield in high-energy electron beam therapy. Actual measurement and monte carlo simulations were performed to evaluate the shielding performance of 3D printing materials for high-energy electron beams. First, in order to secure reliability for the simulation, a source term evaluation was conducted by referring to the IAEA's TRS-398 recommendation. Second, to analyze the shielding performance of PLA+W (93%), a specimen was manufactured using a 3D printer, and the shielding rate by thickness according to electron beam energy was evaluated. Third, the shielding thickness required for electron beam treatment was calculated through a comparative analysis of shielding performance between PLA+W (93%) and existing shielding bodies. First, as a result of the evaluation of the source term through actual measurement and simulation, the TRS-398 recommendation was satisfied with an error of less than 1%, thereby securing the reliability of the simulation. Second, as a result of the shielding performance analysis for PLA+W (93%), 6 MeV electron beams showed a shielding rate of more than 95% at 3.12 mm, and 15 MeV electron beams showed a shielding rate of more than 90% at 10 mm thickness. Third, through simulations, comparative analysis between PLA+W (93%) materials and existing shields showed high shielding rates within the same thickness in the order of tungsten, lead, copper, PLA+W (93%), and aluminum. 6 MeV electron beams showed almost similar shielding rates at 5 mm or more and 15 MeV electron beams. Through this study in the future, it is judged that it can be used as basic data for the production and application of shielding bodies using PLA+W (93%) materials in high-energy electron beam treatment.

The Calculation Model of Electron Output for the Cut-out Fields, in Consideration of Shielding Area. (차폐면적의 변화에 따르는 전자선 출력인자의 변화)

  • 이병용;김정만;김정화;권경태;이두현;이강현;최은경;장혜숙
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.61-68
    • /
    • 1990
  • We have designed the calculation model(AMC method) of electron output for the cut-out fieldsand studied the influence of shielding block size. The output of electron was measured in the water phantom at dmax, for 20 $\times$ 20cm$^2$ cone size electron beams from CL/1800 linear accelerator(Varian, USA), Which generates the energy of 6, 9, 12, 15 and 18MeV electron beams. The shielding blocks were rectangular or squre shaped, low melting point alloy. We can predict the output from the arbitrarily rectangular shaped block within 1% error. by using the AMC method, which considers the contribution of the collimator(block) scatter and the phantom scatter.

  • PDF

Electromagnetic-wave Shielding by Nano Particles-contained Glass Fiber Reinforced Composite Materials (나노입자 첨가 유리섬유강화 복합재료의 전자기파 차폐특성)

  • 정우균;안성훈;원명식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1331-1334
    • /
    • 2004
  • The research on electromagnetic shielding has been advanced for military applications as well as for commercial products. Utilizing the reflective properties and absorptive properties of shielding material, the replied signal measured at the rear surface or at the signal source can be minimized. The shielding effect was obtained from materials having special absorptive properties or from structural characteristics such as stacking sequence. Recently researchers studied the electromagnetic properties of nano size particles. In this research {glass fiber}/{epoxy}/{nano particle} composites(GFR-Nano composites), was fabricated using various nano particles, and their properties in electromagnetic shielding were compared. For the visual observation of the nano composite materials, SEM(Scanning Electron Microscope) and TEM(Transmission Electron Microscope) were used. For the measurement of electromagnetic shielding, HP8719ES S-parameter Vector Network Analyser System was used on the frequency range of 8 GHz~12GHz. Among the nano particles, carbon black and Multi-Walled Carbon Nano-Tube (MWCNT) revealed outstanding electromagnetic shielding. Although silver nano particles (flake and powder) were expected to have effective electromagnetic shielding due to their excellent electric conductivities, test showed little shielding effect.

  • PDF

Comparison of Electromagnetic-wave Shielding Effect in Glass Fiber Reinforced Nano Composites (유리섬유강화 나노 복합재료의 전자기파 차폐효과 비교)

  • Jung Woo-Kyun;Won Myung-Sik;Ahn Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.121-128
    • /
    • 2005
  • The research on electromagnetic shielding has been advanced for military applications as well as for commercial products. Utilizing the reflective properties and absorptive properties of shielding material, the replied signal measured at the rear surface or at the signal source can be minimized. The shielding effect was obtained from materials having special absorptive properties and structural characteristics such as stacking sequence. Recently researchers studied the electromagnetic properties of nano size particles. In this research {glass fiber}/{epoxy}/{nano particle} composites(GFR-Nano composites) was fabricated using various nano particles, and their properties in electromagnetic shielding were compared. For the visual observation of the nano composite materials, SEM(Scanning Electron Microscope) and TEM(Transmission Electron Microscope) were used. For the measurement of electromagnetic shielding, HP8719ES S-parameter Vector Network Analyser System was used on the frequency range of 8 GHz${\~}$12GHz. Among the nano particles, carbon black and Multi-Walled Carbon Nano-Tube (MWCNT) revealed outstanding electromagnetic shielding. Although silver nano particles (flake and powder) were expected to have effective electromagnetic shielding due to their excellent electric conductivities, test results showed little shielding characteristics.

Evaluation of the Usefulness of Patient Customized Shielding Block Made with 3D Printer in the Skin Cancer Electron Beam Therapy (전자선치료 시 3D 프린터로 제작한 환자 맞춤형 차폐체의 유용성 평가)

  • Ahn, Ki-Song;Jung, Woo-Chan;Kim, Dae-Hyun;Kim, Moo-Sub;Yoon, Do-Kun;Shim, Jae-Goo;Suh, Tae-Suk
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.447-454
    • /
    • 2019
  • In order to improve and supplement the shielding method for electron beam treatment, we designed a patient-specific shielding method using a 3D printer, and evaluated the usefulness by comparing and analyzing the distribution of electron beam doses to adjacent organs. In order to treat 5 cm sized superficial tumors around the lens, a CT Simulator was used to scan the Alderson Rando phantom and the DICOM file was converted into an STL file. The converted STL file was used to design a patient-specific shield and mold that matched the body surface contour of the treatment site. The thickness of the shield was 1 cm and 1.5 cm, and the mold was printed using a 3D printer, and the patient customized shielding block (PCSB) was fabricated with a cerrobend alloy with a thickness of 1 cm and 1.5 cm. The dosimetry was performed by attaching an EBT3 film on the surface of the Alderson Rando phantom eyelid and measuring the dose of 6, 9, and 12 MeV electron beams on the film using four shielding methods. Shielding rates were 83.89%, 87.14%, 87.39% at 6, 9, and 12 MeV without shielding, 1 cm (92.04%, 87.48%, 86.49%), 1.5 cm (91.13%, 91.88% with PSCB), 92.66%) The shielding rate was measured as 1 cm (90.7%, 92.23%, 88.08%) and 1.5 cm (88.31%, 90.66%, 91.81%) when the shielding block and the patient-specific shield were used together. PCSB fabrication improves shielding efficiency over conventional shielding methods. Therefore, PSCB may be useful for clinical application.

Shielding Design of Electron Beam Accelerators Using Supercomputer (슈퍼컴을 이용한 전자빔가속기의 차폐설계)

  • Kang, Won Gu;Kim, In Soo;Kuk, Sung Han;Kim, Jin Kyu;Han, Bum Soo;Jeong, Kwang Young;Kang, Chang Mu
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • The MCNP5 neutron, electron, photon Monte Carlo transport program was installed on the KISTI's SUN Tachyon computer using the parallel programming. Electron beam accelerators were modeled and shielding calculations were performed in order to investigate the reduction of computation time in the supercomputer environment. It was observed that a speedup of 40 to 80 of computation time can be obtained using 64 CPUs compared to an IBM PC.

Evaluation of the Usefulness of Tungsten Nanoparticles as an Alternative to Lead Shielding Materials in Electron Beam Therapy (전자선 치료시 납 차폐체 대체물질로서의 텅스텐 나노입자의 유용성 평가)

  • Kim, Ji-Hyang;Kim, Na-Kyoung;Lee, Gyu-Yeong;Jung, Da-Bin;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.949-956
    • /
    • 2021
  • The purpose of this paper is to evaluate whether tungsten nanoparticles have a shielding effect on scattered light generated at high doses as an alternative material to lead used to shield scattered light in electron beam therapy. A plate was manufactured to set the position of the dosimeter and the size of the radiation field to be constant. The glass dosimeter was placed at 12 points, which were 1, 2, and 4 cm apart from the center of the field of 10 × 10 cm2 in the cross direction. A total of 12 types of tungsten nanoparticle shields were developed with a thickness of 0.75 mm to 4.00 mm and a size of 10 × 10 cm2 using 0.4, 0.75, and 1 mm materials. Using a linear accelerator, measurements were made four times at 6 MeV and four times at 12 MeV, and the dose intensity was investigated at 100 MU. The 4 mm shielding plate showed the highest shielding effect at 1 cm from the irradiation field. The 1 mm shielding plate at 2 cm from the irradiation field had the lowest shielding effect. As the thickness of the tungsten shielding plate increased, the electron beam's shielding effect increased sharply. It was confirmed that tungsten nanoparticles can reduce the amount of scattered light generated by electron beam therapy. Therefore, this study will provide basic data when follow-up studies are conducted on the shielding ability of tungsten nanoparticles.

The Manufacturing of Electromagnetic Shielding Sheet Using the Carbon and Wood Fiber Mixture (탄소와 목재섬유 혼합물을 이용한 전자기파 차폐용 시트의 제조)

  • Kim, Hyoung-Jin;Um, Gi-Jeung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.4 s.117
    • /
    • pp.68-75
    • /
    • 2006
  • Electromagnetic shielding sheet using the carbon and wood fiber mixture was manufactured in an effort to develop an electromagnetic shielding packaging material. Carbon fibers were cut into 5, 10, and 15 mm using the automatic cutting device and blown and dispersed using compression air passed through the fine nozzle. Then carbon fibers were slurried with water (0.1% consistency), and softwood kraft pulp along with cone starch were added. The wet mats were manufactured by dewatering in modified hand-sheet machine. The wet mats were pressed upto $4kgf/cm^2$ in the carbon and wood fiber mixture mat press. The wet mats were dried in the automatic controlled plate dryer. Investigation on the formation and surface structure of the newly developed carbon and wood fiber mixture electromagnetic shielding sheet were carried out using the scanning electron microscopy and the image analyzer. Finally electromagnetic shielding characteristics of the newly developed carbon and wood mixture sheet were measured using net-work analyser. The result was promising in the light of the fact that this method could open a new way to substitute the expensive imported electromagnetic shielding sheet.

Boundary Element Analysis of Magnetic Shielding Effects of Shield Cup in Electron Gun (경계요소법을 이용한 전자총 Shield Cup의 자기차폐 특성해석)

  • Go, Chang-Seop;Jeong, Gwan-Sik;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.291-296
    • /
    • 2000
  • Recently large size color TV and computer monitor are very popular and a lot techniques are being developed to get a high quality picture on the screen through reducing the convergence error among the red, green and blue beams and achieving a high focusing. One of the techniques is considering the mutual effects of the components of the Brown tube. The magnetic deflection yoke, especially, stands immediately next to the electron gun and generates the leakage magnetic fields at the electron gun which affects the trajectories of the electron beams inside the gun. Hence a shield cup made of thin conducting plate is located at the end of electron gun in order to shield the leakage flux from the deflection yoke. Since the red, green and blue beams are placed unsymmetrically the shielding effects of the shield cup on the beams are not same and eddy current controller, made of thin conducting plate, is auxiliary placed inside the shield cup. In this paper a transient magnetic field analysis algorithm is developed using boundary element method, and applied to the analysis of the shielding effects of the eddy current controller of shield cup in an electron gun.

  • PDF

Dosimetric characteristics of an independent collimator system using measurements performed quarter fields. (Tungsten eyeball shield block의 임상적용에 관한 고찰)

  • Jeong, Deok-Yang;Lee, Byoung-Koo;Hwang, Woong-Koo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.89-94
    • /
    • 2002
  • During radiation therapy with electron beam to eyelid, we must keep the minimal dose on eyeball as possible. especially in the treatment of Sebaceous gland carcinoma, Squamouse cell ca., and basal cell ca. of eyelid and low grade MALToma etc. But if radiation field covered the upper & lower eyelid, it makes a cataract on lens of treated eye, in late complications. Now we reports the advantages of Tungsten eyeball shielding block compare to previously used lead block. with BOLX-I material, we made a eyeball model and measured the absorbed dose of 6MeV & 9MeV electron hem at 6 point of eyeball model with TLD chip. And compare the absorbed dose to previously lead block and other types of Tungsten eyeball shielding block.

  • PDF