• Title/Summary/Keyword: Electron-ion bremsstrahlung

Search Result 4, Processing Time 0.023 seconds

Numerical optimization of transmission bremsstrahlung target for intense pulsed electron beam

  • Yu, Xiao;Shen, Jie;Zhang, Shijian;Zhang, Jie;Zhang, Nan;Egorov, Ivan Sergeevich;Yan, Sha;Tan, Chang;Remnev, Gennady Efimovich;Le, Xiaoyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.666-673
    • /
    • 2022
  • The optimization of a transmission type bremsstrahlung conversion target was carried out with Monte Carlo code FLUKA for intense pulsed electron beams with electron energy of several hundred keV for maximum photon fluence. The photon emission intensity from electrons with energy ranging from 300 keV to 1 MeV on tungsten, tantalum and molybdenum targets was calculated with varied target thicknesses. The research revealed that higher target material element number and electron energy leads to increased photon fluence. For a certain target material, the target thickness with maximum photon emission fluence exhibits a linear relationship with the electron energy. With certain electron energy and target material, the thickness of the target plays a dominant role in increasing the transmission photon intensity, with small target thickness the photon flux is largely restricted by low energy loss of electrons for photon generation while thick targets may impose extra absorption for the generated photons. The spatial distribution of bremsstrahlung photon density was analyzed and the optimal target thicknesses for maximum bremsstrahlung photon fluence were derived versus electron energy on three target materials for a quick determination of optimal target design.

Sonoluminescence Characteristics from Submicron Size bubbles (마이크로 이하 기포로부터의 소노루미네센스 특성)

  • Byun, Ki-Taek;Karng, Sarng-Woo;Kim, Ki-Young;kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1201-1206
    • /
    • 2004
  • Sonoluminescence (SL) characteristics such as pulse shape, radiance and spectrum radiance from submicron bubbles were investigated. In this study, a set of analytical solutions of the Navier-Stokes equations for the gas inside bubble and equations obtained from mass, momentum and energy equations for the liquid layer adjacent the bubble wall were used to estimate the gas temperature and pressure at the collapse point, which are crucial parameters to determine the SL characteristics. Heat transfer inside the gas bubble as well as at the liquid boundary layer, which was not considered in the most of previous studies on the sonoluminescence was taken it into account in the calculation of the temperature distribution inside the bubble. It was found that bremsstrahlung is a very possible mechanism of the light emission from either micron or submicron bubbles. It was also found that the peak temperature exceeding $10^{6}$ K in the submicron bubble driven at 1 MHz and 4 atm may be due to the rapid change of the bubble wall acceleration near the collapse point rather than shock formation.

  • PDF

Dosimetry for Total Skin Electron Beam Therapy in Skin Cancer (피부암치료를 위한 전자선 전신피부 치료방법과 선량분포 측정)

  • Chu, Sung-Sil;Loh, John-Jk;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.107-113
    • /
    • 1992
  • Increasing frequency of skin cancer, mycosis fungoides, Kaposi's sarcoma etc, it need to treatment dose planning for total skin electron beam (TSEB) therapy. Appropriate treatment planning for TSEB therapy is needed to give homogeneous dose distribution throughout the entire skin surface. The energy of 6 MeV electron from the 18 MeV medical linear accelerator was adapted for superficial total skin electron beam therapy. The energy of the electron beam was reduced to 4.2 MeV by a $0.5\;cm\times90\;cm{\times}180\;cm$ acryl screen placed in a feet front of the patient. Six dual field beam was adapted for total skin irradiation to encompass the entire body surface from head to toe simultaneously. The patients were treated behind the acryl screen plate acted as a beam scatterer and contained a parallel-plate shallow ion chamber for dosimetry and beam monitoring. During treatment, the patient was placed in six different positions due to be homogeneous dose distribution for whole skin around the body. One treatment session delivered 400 cGy to the entire skin surface and patients were treated twice a week for eight consecutive weeks, which is equivalent to TDF value 57. instrumentation and techniques developed in determining the depth dose, dose distribution and bremsstrahlung dose are discussed.

  • PDF

The Study of Dose Change by Field Effect on Atomic Number of Shielding Materals in 6 MeV Electron Beam (6 MeV 전자선의 차폐물질 원자번호와 조사야 크기에 따른 선량변화 연구)

  • Lee, Seung Hoon;Kwak, Keun Tak;Park, Ju Kyeong;Gim, Yang Soo;Cha, Seok Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 2013
  • Purpose: In this study, we analyzed how the dose change by field size effects on atomic number of shielding materials while using 6 MeV election beam. Materials and Methods: The parallel plate chamber is mounted in $25{\times}25cm^2$ the phantom such that the entrance window of the detector is flush with the phantom surface. phantom was covered laterally with aluminum, copper and lead which thickness have 5% of allowable transmission and then the doses were measured in field size $6{\times}6$, $10{\times}10$ and $20{\times}20cm^2$ respectively. 100 cGy was irradiated using 6 MeV electron beam and SSD (Source Surface Distance) was 100 cm with $10{\times}10cm^2$ field size. To calculate the photon flux, electron flux and Energy deposition produced after pass materals respectively, MCNPX code was used. Results: The results according to the various shielding materials which have 5% of allowable transmission are as in the following. Thickness change rate with field size of $6{\times}6cm^2$ and $20{\times}20cm^2$ that compared to the field size of $10{\times}10cm^2$ found to be +0.06% and -0.06% with aluminum, +0.13% and -0.1% with copper, -1.53% and +1.92% with lead respectively. Compare to the field size $10{\times}10cm^2$, energy deposition for $6{\times}6cm^2$ and $20{\times}20cm^2$ had -4.3% and +4.85% respectively without shielding material. With aluminum it had -0.87% and +6.93% respectively and with lead it had -4.16% and +5.57% respectively. When it comes to photon flux with $6{\times}6cm^2$ and $20{\times}20cm^2$ of field sizes the chance -8.95% and +15.92% without shielding material respectively, with aluminum the number -15.56% and +16.06% respectively and with copper the chance -12.27% and +15.53% respectively, with lead the number +12.36% and -19.81% respectively. In case of electron flux in the same condition, the number -3.92% and +4.55% respectively without shielding material respectively, with aluminum the number +0.59% and +6.87% respectively, with copper the number -1.59% and +3.86% respectively, with lead the chance -5.15% and +4.00% respectively. Conclusion: In this study, we found that the required thickness of the shielding materials got thinner with low atomic number substance as the irradiation field is increasing. On the other hand, with high atomic number substance the required thickness had increased. In addition, bremsstrahlung radiation have an influence on low atomic number materials and high atomic number materials are effected by scattered electrons.

  • PDF