• Title/Summary/Keyword: Electronic throttle

Search Result 36, Processing Time 0.024 seconds

Nonlinear Dynamic Inversion Based Control for Electronic Throttle (비선형 다이나믹 인버전을 이용한 전자식 스로틀 제어)

  • Yang, In-Seok;Song, Moo-Geun;Lee, Dong-Ik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.8-14
    • /
    • 2012
  • "Throttle-by-Wire" is an electronic throttle system in which mechanical cables and hydraulics are replaced by a fieldbus network, electric motors and sensors. It is crucial for an electronic throttle to design a controller that can offer an accurate and fast reference tracking performance in the presence of nonlinearities, such as friction in the gearbox and "limp-home" nonlinearity. This paper presents a nonlinear dynamic inversion based control algorithm for electronic throttle systems. Using the proposed method, the specified control performance can be achieved by canceling inherent nonlinear characteristics of the electronic throttle system. The control performance is investigated through a set of simulation results.

Electronic Throttle Valve Control Using BLDC Motor (BLDC 모터를 이용한 전자 스로틀 밸브 제어)

  • Kwon Yong-Chan;Park Jong-Won;Cho Hag-Lea;Son Jeong-Ki;Kwon Soon-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.163-165
    • /
    • 2006
  • Electronic throttle control(ETC) is critical to drive ability, fuel economy and emission performance of present day passenger vehicles. Until now, many automobile engineer and company have been development electronic throttle controller and control algorism, such as adaptive control, sliding control, nonlinear and so on. But there are almost electronic throttle control using DC motor or stepping motor. This paper is the design of an electronic throttle controller and electronic throttle valve control using BLDC motor instead of DC motor.

  • PDF

A Study on Optimal Design of Small BLDC Motor for Driving Automobile ETC(Electronic Throttle Control) (자동차용 ETC(Electronic Throttle Control) 구동을 위한 소형 BLDC 모터의 최적설계에 관한 연구)

  • Han, Jae-Man;Kim, Dong-Sok;Park, Gwan-Soo;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.50-52
    • /
    • 2007
  • Throttle Control 장치는 차량의 지능화와 연료 절감의 이유로 기계식에서 전기적 신호의 연결로 구동시키는 시스템으로 발전하고 있다. 전기 전자 시스템을 도입한 ETC(Electronic Throttle Control)의 구성요소 중 필수적인 구동 원으로 DC모터를 많이 사용하고 있지만, DC모터는 정류작용 시 브러시의 스파크를 발생시키는 단점을 가진다. 이에 전기적 및 기계적 Noise가 적고 신뢰성이 높으며 수명이 긴 BLDC 모터의 개발이 필요하다. 이에 BLDC 모터의 기초 설계와 최적 설계를 통해 형상을 설계하고 이를 정자계 유한요소법을 이용하여 해석하고 목표 토크인 0.2[Nm]에 적합한 BLDC 모터를 설계하였다.

  • PDF

A Modeling and Control of Intelligent Cruise Control Systems (지능형 순항 제어 시스템 모델링 및 제어)

  • Lee, Se-Jin;Hong, Jin-Ho;Lee, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.283-288
    • /
    • 2001
  • A throttle/brake control law for the intelligent cruise control(ICC) systems has been proposed in this paper. The ICC system consists of a vehicle detection sensor, the control algorithm and a throttle/brake actuators. For the control of a throttle/brake system, we introduced a solenoid-valve-controlled electronic vacuum booster and a step-motor controlled throttle actuator. Nonlinear computer model for the electronic vacuum booster has been developed and the simulations were per formed using a complete nonlinear vehicle model. The results indicate the proposed throttle/brake control law can provide the ICC system with an optimized performance.

An Experimental Study on the Safety Standard of Electronic Throttle Control System (전자식 가속제어장치 안전기준에 대한 실험적 고찰)

  • Yun, Kyungcheol;Yong, Geejoong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.1
    • /
    • pp.48-54
    • /
    • 2019
  • Optimal engine control is needed to cope with the global environmental regulations that are globally enforced. For optimum engine control, the electronic throttle control system (ETCS) is a prerequisite. Automotive makers are having an effect on reducing emissions and improving fuel economy by applying ETCS which is designed to secure stability. The ETCS controls the output of the throttle valve by passing the output value of the accelerator position sensor (APS) to the engine control unit (ECU). In this study, the authors investigated the safety standards of domestic and overseas accelerator control system and tried to understand how the air flow control affects the engine output by replacing the throttle. The authors suggest an improvement proposal of safety standard based on the result of driving evaluation by various modes.

Actuator Control of Throttle Valve of An Automobile

  • Lee, Kyung-Moon;Lee, Jung-Yong;Kim, Gun-Tae;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.602-607
    • /
    • 2004
  • Accurate and quick positioning of the throttle valve in driving situation is required to implement the Traction Control System(TCS). Also, unlike a conventional throttle valve which is connected to the accelerator directly by a wire, an Electronic Throttle Valve(ETV) is driven by a DC motor and can move dependently upon the accurate position of the accelerator. In the research, the Electronic Throttle Body(ETB) and Controller for TCS application was developed. In order to drive the DC motor, the developed controller was built and interfaced to the ECU and ETB. The PID position control algorism and developed systems are designed to realize the robust tracking control of the ETV. Actual vehicle tests with these systems and PID position control algorithm. Finally, the performance of the proposed those are evaluated with the experimental studies.

  • PDF

Throttle/Brake Combined Control for Vehicle-to-vehicle Distance and Speed Control (찻간 속도/거리제어를 위한 구동력/제동력 통합제어)

  • 이세진;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.137-142
    • /
    • 2001
  • A throttle/brake control law for the intelligent cruise control(ICC) systems has been proposed in this paper. The ICC system consists of a vehicle detection sensor, the control algorithm and a throttle/brake actuators. The control performance has been investigated through vehicle tests. The test vehicle is equipped with a MMW radar sensor, a solenoid-valve-controlled Electronic-Vacuum-Booster(EVB) and a step-motor controlled throttle actuator. The results indicate the proposed throttle/brake control laws can provide satisfactory vehicle-to-vehicle distance and velocity control performance.

  • PDF

Modelling of Optimum Design of High Vacuum System for Plasma Process

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.159-165
    • /
    • 2021
  • Electronic devices used in the mobile environments fabricated under the plasma conditions in high vacuum system. Especially for the development of advanced electronic devices, high quality plasma as the process conditions are required. For this purpose, the variable conductance throttle valves for controllable plasma employed to the high vacuum system. In this study, we analyzed the effects of throttle valve applications on vacuum characteristics simulated to obtain the optimum design modelling for plasma conditions of high vacuum system. We used commercial simulator of vacuum system, VacSim(multi) on this study. Reliability of simulator verified by simulation of the commercially available models of high vacuum system. Simulated vacuum characteristics of the proposed modelling agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve schematized as the modelling of throttle valve for the constant process-pressure of below 10-3 torr. Simulation results plotted as pump down curve of chamber, variable valve conductance and conductance logic of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably in plasma process.

PID Gain Auto Tuning of ETB by Using RLS (반복 최소 자승법을 이용한 전자식 스로틀 바디의 PID 이득 자동 조정)

  • Jeon, Chan-Sung;Kim, Dae-Sang;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • This paper presents a PID automatic gain-tuning algorithm for the electronic throttle valve which is driven by wire. Since the system characteristics of position control for electronic throttle valve are so complicated that both the real time robustness and the manufacturing cost must be considered for mass production. To resolve this paradox, a kind of algorithm called RLS (Recursive Least Square) is adopted for the control of the ETB (Electronic Throttle Body). Using this algorithm, the PID gains can be adjusted automatically with the estimated system parameters. Furthermore, a pre-filter is supplemented for the sake of the robustness against the friction and loads. From the industrial requests for the system, the design specifications are decided as follows: the settling time should be less than 1sec and the overshoot should be kept below 3%. The results of the experiments based on this approach show that the high robustness can be achieved while the system stability is satisfied steadily. A parameter estimation scheme and a gain-tuning algorithm have been properly combined and utilized in this research and the effectiveness is verified through the real experiments.

  • PDF

High Response and Precision Control of Electronic Throttle Controller Module without Hall Position Sensor for Detecting Rotor Position of BLDCM

  • Lee, Sang-Hun;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • This paper describes the characteristics of Electronic Throttle Controller (ETC) module in BLDC motor without the hall sensor for detecting a rotor position. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analogue voltage output on the throttle valve instead of BLDC motor for detecting the rotor position. So the additional commutation information is necessarily needed to control the ETC module. For this, the estimation method is applied. In order to improve and obtain the high resolution for the position control, it is generally needed to change the gear ratio of the module or the electrical switching method etc. In this paper, the 3-phase switching between successive commutations is adapted instead of the 2-phase switching that is conventionally used. In addition, the position control with a variable PI gain is applied to improve a dynamic response during a transient period and reduce vibration at a stop in case of matching position reference. The mentioned method can be used to estimate the commutation state and operate the high-precision position control for the ETC module and the high response characteristics. The validity of the proposed method is examined through the experimental results.