• 제목/요약/키워드: Electrostatic interaction

검색결과 253건 처리시간 0.025초

Electrostatic Interaction Between Oligopeptides and Phosphate Residues by Determination of Absolute Raman Intensities

  • Kye-Taek Lim
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권3호
    • /
    • pp.286-289
    • /
    • 1991
  • The changed isotropic absolute Raman intensities of the phosphate residue in the complexes of positive charge oligopeptides, lys-lys, arg-arg, lys-aromat-lys, negative charge diethyl phosphoric acid (DEP) and polyriboadenylic acid{poly(rA)} were reported and discussed. Our measurements showed that the absolute intensities of phosphate stretch vibration in complexes were different according to the reaction partners. Due to the partial electrical charge and molecular structure of oligopeptides for the complex formation lysine can interact more strongly than arginine when the reaction partners have short chain and no steric hindrance. Owing to these reasons the intensity of phosphate stretching vibration is very sensitive according to the circumstance of reaction. From our results we could suggest that we can discriminate any one of the the lysine and arginine in the complicated biological molecule during interaction between nucleotides and proteins. The activity of reaction of two basical oligopeptides is not quite similar for complex formation in aqueous solution. The activity of dipeptides depends upon the structure of molecule and environment for complex formation. Aromatic ring contributes to electrostatic interaction in complexes. The amount of the absolute intensity for pure stacking interaction is smaller than electrostatic interaction in macromolecular complexes.

Silica-based Gel Filtration 크로마토그래피에서의 단백질-실리카 상호작용 (Protein-silica Interaction in Silica-based Gel Filtration Chromatography)

  • 최중갑;유경수
    • 약학회지
    • /
    • 제35권6호
    • /
    • pp.461-465
    • /
    • 1991
  • Silica-based gel filtration chromatography has been used to characterize molecular weight of proteins. However, the molecular weight measured by this method was distorted by protein-silica interactions like hydrophobic and electrostatic forces. Therefore, we characterized protein-silica interaction using two forms of phytochrome (124 kDa) having different hydrophobicity and surface charge. PH and ionic strength affected the retention time of phytochrome suggesting that electrostatic force is the major interaction between protein and silica surface.

  • PDF

Solvent Effect on the Dynamics of Radical Ion Pair Separation

  • Han, Chul-Hee
    • Journal of Photoscience
    • /
    • 제8권1호
    • /
    • pp.33-37
    • /
    • 2001
  • Picosecond absorption spectroscopy has been employed in the study of the solvent dynamics of 1, 2, 4, 5-tetracyanobenzene/biphenyl derivative radical ion pairs, and the resulting rates of radical ion pair separation are faster in acetonitrile than in dichloromethane. In an effort to account quantitatively for such solvent effect on the rate of radical ion pair separation, an equation for the rate of radical ion pair separation is introduced, in which the rate depends exponentially on the electrostatic interaction energy in the radical ion pair. In our analysis of the types of electrostatic interaction energy based on the conducting spheres in dielectric continuum was chosen, and the rate equation employing this electrostatic energy provided information on the distance on the distance of radical ion pair separation and solvation energy of the radical ion pair, thereby providing quantitative explanation for the observed solvent effect on the rate of radical ion pair sepaaration.

  • PDF

Ring-Conformations via the Competition of Electrostatic Interaction and Argentophilic Interaction. Cyclodimeric Structures of Silver Trifluoromethanesulfonate Containing Isonicotinate Ester Ligands

  • Kim, Chi-Won;Kim, Cho-Rong;Noh, Tae-Hwan;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권10호
    • /
    • pp.2341-2344
    • /
    • 2009
  • Metallacyclodimers, [Ag(OTf)($L1)]_2$ and [Ag($L2)]_2(OTf)_2$ (L1 = 1,3-dibromo-2,2-bis[(isonicotinoyloxy)methyl] propane; L2 = 2,5-dimethyl-2,5-bis(isonicotinoyloxy)hexane) were constructed and characterized. The crystal structure of [Ag(OTf)($L1)]_2$ reveals a 32-membered cyclodimer, whereas that of [Ag($L2)]_2(OTf)_2$ shows a linked 34-membered cyclodimer chain via intercyclic argentophilic (Ag…Ag) interactions. [Ag(OTf)($(L1)]_2$ affords “intramolecular $\pi-\pi$ interaction cyclodimer” whereas [Ag($L2)]_2(OTf)_2$ produces a racemic mixture of “twisted cyclodimer”. Ring-conformation of the cyclodimers was affected via the competition of electrostatic interaction and argentophilic interaction.

Quenching of Water Soluble Conjugated Polymer by Electrostatic Interaction

  • Jin, Youngeup
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3593-3596
    • /
    • 2012
  • The water-soluble conjugated polymer with fluorescence quenching as a result of electrostatic interaction and aggregation was synthesized through Suzuki polymerization. The absorption and emission of anionic polymer (a-PFP) is blue shifted as compared with cationic polymer (c-PFP) although getting same backbone, and the absolute PL quantum efficiency of a-PFP in water is over 90% due to good solubility in aqueous solution. We anticipate that the fluorescence quenching of anionic and cationic polymers, with same conjugated backbone, could be shown in aqueous solution.

2단식 전기집진기의 집진판 블록간격 및 입자크기가 입자의 부착효율에 미치는 영향 (Effects of the Block Distance of Collecting Plate and Particle Size on the particle Deposition Efficiency in the Two-Stage Electrostatic Precipitator)

  • 박청연
    • 한국대기환경학회지
    • /
    • 제16권2호
    • /
    • pp.165-178
    • /
    • 2000
  • In this study the effects of block distance have been investigated on the particle deposition efficiency in the collecting cell of two-stage electrostatic precipitator by numerical analysis. Particle trajectories have been changed by the electrostatic and inertial force of particle with the inlet velocity electrostatic number and particle diameter. The total deposition efficiency has a minimum value by the interaction between the effect of particle inertial force and electrostatic force in the collecting cell. The increase of block distance makes the total deposition efficiency decrease under the range of the particle size which has the minimum deposition efficiency. However beyond the range of particle size which has minimum deposition efficiency total deposition efficiency has no trend with the variation of block distance.

  • PDF

Trypsin 반응에 대한 용매의 유전상수 및 압력의 영향 (Effect of Pressure and Solvent Dielectric Constant on the Kinetic Constants of Trypsin-Catalyzed Reaction.)

  • 박현;지영민
    • 한국미생물·생명공학회지
    • /
    • 제28권1호
    • /
    • pp.26-32
    • /
    • 2000
  • Electrostatic forces contribute to the high degree of enzyme transition state complementarity in enzyme catalyzed reaction and such forces are modified by the solvent through its dielectric constant and polar properties. The contributions of electrostatic interaction to the formation of ES complex and the stabilization of transition state of the trypsin catalyzed reaction were probed by kinetic studied with high pressure and solvent dielectric constant. A good correlation has been observed between the increase of catalytic efficiency of trypsin and the decrease of solvent dielectric constant. Activation volume linearly decreased as the dielectric constant of solvent decreased, which means the increase in the reaction rae. Moreover, the decrease of activation volume by lowering the solvent dielectric constant implies a solvent penetration of the active with and a reduction of electrostatic energy for the formation of dipole of the active site oxyanion hole. When the 야electric constant of the solvents was lowered to 4.7 unit, the loss of activation energy and that of free energy of activation were 2.262 KJ/mol and 3.169 KJ/mol, respectively. The results of this study indicate that the high pressure kinetics combined with solvent effects can provide unique information on enzyme reaction mechanisms, and the controlling the solvent dielectric constant can stabilize the transition state of the trypsin-catalyzed reaction.

  • PDF

Electrokinetic flow and electroviscous effect in a charged slit-like microfluidic channel with nonlinear Poisson-Boltzmann field

  • Chun, Myung-Suk;Kwak, Hyun-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제15권2호
    • /
    • pp.83-90
    • /
    • 2003
  • In cases of the microfluidic channel, the electrokinetic influence on the transport behavior can be found. The externally applied body force originated from the electrostatic interaction between the nonlinear Poisson-Boltzmann field and the flow-induced electrical field is applied in the equation of motion. The electrostatic potential profile is computed a priori by applying the finite difference scheme, and an analytical solution to the Navier-Stokes equation of motion for slit-like microchannel is obtained via the Green's function. An explicit analytical expression for the induced electrokinetic potential is derived as functions of relevant physicochemical parameters. The effects of the electric double layer, the zeta potential of the solid surface, and the charge condition of the channel wall on the velocity profile as well as the electroviscous behavior are examined. With increases in either electric double layer or zeta potential, the average fluid velocity in the channel of same charge is entirely reduced, whereas the electroviscous effect becomes stronger. We observed an opposite behavior in the channel of opposite charge, where the attractive electrostatic interactions are presented.

Effects of Polyelectrolytes on the Charge Transfer Complexing between Indole derivatives and Methylviologen: Hydrophobic and Electrostatic Interactions

  • Park, Joon-Woo;Hwang, Book-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권3호
    • /
    • pp.145-148
    • /
    • 1985
  • The effect of anionic polyelectrolytes, poly(styrenesulfonate) (PSS) and poly(vinylsulfonate) (PVS), on the charge transfer complexing between indole derivatives and methyl viologen($MV^{++}$) cation was investigated. The results were compared with effect of NaCl and an anionic surfactant, sodium dodecylsulfate (SDS). Both PSS and PVS enhanced the complex formation of neutral species (indole and indole acetate at low pH), zwitter ionic tryptophan, and positively charged tryptamine and tryptophan at low pH with $MV^{++}$. This result was attributed to the contribution of hydrophobic interaction, in addition to electrostatic interaction. The enhancing effect of PSS was much higher than that of PVS reflecting the higher hydrophobicity of PSS. The interaction between indole acetate anion and $MV^{++}$ was greatly reduced by addition of PVS and PSS. The higher charge density of PVS was appeared as greater reducing effect indicating the importance of electrostatic force in this case. In all cases, the effect of polyelectrolytes showed maxima, and further addition of PVS and PSS decreased the effect. This behavior was explained in terms of distribution of indole derivatives and $MV^{++}$ in domain of polyanions. The complex formation constants and molar absorptivities of complexes were determined, and the values were compared with those in water and SDS solutions.

전기집진에서의 난류 입자 이산 (Turbulent Particle Dispersion Effects on Electrostatic Precipitation)

  • 최범석
    • 연구논문집
    • /
    • 통권28호
    • /
    • pp.39-47
    • /
    • 1998
  • Industrial electrostatic precipitation is a very complex process, which involves multiple-way interaction between the electric field, the fluid flow, and the particulate motion. This paper describes a strongly coupled calculation procedure for the rigorous computation of particle dynamics during electrostatic precipitation. The turbulent gas flow and the particle motion under electrostatic forces are calculated by using the commercial computational fluid dynamics (CFD) package FLUENT linked to a finite-volume solver for the electric field and ion charge. Particle charge is determined from both local electrical conditions and the cell residence time which the particle has experienced through its path. Particle charge density and the particle velocity are averaged in a control volume to use Lagrangian information of the particle motion in calculating the gas and electric fields. The turbulent particulate transport and the effects of particulate space charge on the electrical current flow are investigated. The calculated results for poly-dispersed particles are compared with those for mono-dispersed particles, and significant differences are demonstrated.

  • PDF