• Title/Summary/Keyword: Embryonic effect

Search Result 389, Processing Time 0.025 seconds

Studies on the Effect of Ginseng Extract on Chick Embryonic Nerve and Muscle Cells (인삼이 신경 및 근육 세포에 미치는 영향에 대한 연구)

  • 김영중;김은경
    • YAKHAK HOEJI
    • /
    • v.24 no.3_4
    • /
    • pp.143-150
    • /
    • 1980
  • The effect of ginseng saponin on chick embryonic dorsal root ganglia organ culture and brain, spinal cord, muscle dissociation cultures was studied. The fiber outgrowth in explanted chick embryonic dorsal root ganglia was markedly induced by water and alcohol extracts of ginseng, total ginseng saponin, protopanaxadiol and protopanaxatriol glycosides as well as ginsenosides R/sub b1/, R/sub d/, R/sub 0/+R/sub a/+R/sub b1/, and R/sub b2/+R/sub c/+R/sub e/ mixtures. The life span of the cultured chick embryonic dorsal root ganglia and potentiation of nerve cell density were also observed with all of these ginseng saponins. The effect of ginseng saponin on chick embryonic dorsal root ganglia organ culture was more marked in the absence of the chick embryonic extract which was known to contain nerve growth factor-like material in the culture media. However, the ginseng saponin did not influence the cultured central nervous system such as brain and spinal cord cells and cultured skeletal muscle cells with respect to the morphological changes, maturation and life span of these cells.

  • PDF

Maternal effect genes: Findings and effects on mouse embryo development

  • Kim, Kyeoung-Hwa;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.41 no.2
    • /
    • pp.47-61
    • /
    • 2014
  • Stored maternal factors in oocytes regulate oocyte differentiation into embryos during early embryonic development. Before zygotic gene activation (ZGA), these early embryos are mainly dependent on maternal factors for survival, such as macromolecules and subcellular organelles in oocytes. The genes encoding these essential maternal products are referred to as maternal effect genes (MEGs). MEGs accumulate maternal factors during oogenesis and enable ZGA, progression of early embryo development, and the initial establishment of embryonic cell lineages. Disruption of MEGs results in defective embryogenesis. Despite their important functions, only a few mammalian MEGs have been identified. In this review we summarize the roles of known MEGs in mouse fertility, with a particular emphasis on oocytes and early embryonic development. An increased knowledge of the working mechanism of MEGs could ultimately provide a means to regulate oocyte maturation and subsequent early embryonic development.

Effect of Oocyte Maturation Medium, Cytochalasin Treatment and Electric Activation on Embryonic Development after Intracytoplasmic Sperm Injection in Pigs

  • Lee, Joohyeong;Choi, Jung Hoon;Lee, Seung Tae;Hyun, Sang-Hwan;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.28 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • The objective of this study was to examine the effect of in vitro maturation (IVM) medium, cytochalasin B (CB) treatment during intracytoplasmic sperm injection (ICSI), and electric activation on in vitro development ICSI-derived embryos in pigs. Immature pig oocytes were matured in vitro in medium 199 (M199) or porcine zygote medium (PZM)-3 that were supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones for the first 22 h and then further cultured in hormone-free medium for an additional 21~22 h. ICSI embryos were produced by injecting single sperm directly into the cytoplasm of IVM oocytes. The oocytes matured in PZM-3 with 61.6 mM NaCl (low-NaCl PZM-3) tended to decrease (0.05

Fluoxetine Treatment during In Vitro Fertilization and Culture Increases Bovine Embryonic Development

  • Choe, Changyong;Kang, Dawon
    • Journal of Embryo Transfer
    • /
    • v.29 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • $K^+$ channels are involved in the regulation of a variety of physiological functions, including proliferation, apoptosis and differentiation, in mammalian cells. Our previous study demonstrated that the blockage of $K^+$ channels inhibits mouse early embryonic development. This study was designed to identify the effect of $K^+$ channels during bovine embryonic development. $K^+$ channel blockers (tetraethylammonium (TEA), $BaCl_2$, quinine, ruthenium red and fluoxetine) were added to the culture medium during in vitro fertilization (IVF) for 6 h to first identify the short-term effect of these chemicals. Among $K^+$ channel blockers, fluoxetine, which is used as a selective serotonin reuptake inhibitor, significantly increased the blastocyst formation rate by approximately 6% when compared to control. During the in vitro maturation (IVM) of immature oocytes and the in vitro culture (IVC) of embryos, the oocytes and embryos were exposed to fluoxetine for either a short-term (6 h) or a long-term (24 h) to compare the embryonic development in response to exposure time. The 6 h exposure to fluoxetine during IVM did not affect the blastocyst formation rate, but the rate of blastocyst formation was reduced after the 24 h exposure. On the other hand, embryonic development increased approximately 10% in both groups of embryos exposed to fluoxetine for 6 and 24 h during IVC. Taken together, fluoxetine treatment during IVF and IVC, but not IVM, enhances bovine embryonic development. These results suggest that fluoxetine-modulated signals in oocytes and embryos could be an important factor towards enhancing bovine embryonic development.

Effects of Serum Fractions Separated by Molecular Weight on the Development of Mouse Embryos Fertilized In Vitro (분자량에 따라 분획화된 혈청성분이 생쥐 체외수정란의 발생에 미치는 영향)

  • 한정호;정구민
    • Journal of Embryo Transfer
    • /
    • v.9 no.1
    • /
    • pp.127-137
    • /
    • 1994
  • This study was carried out to investigate the inhibiting or promoting effect of fetal bovine serum fractionated by the molecular weight and to examine the effect of reconstruction of serum fractions on the development of 1- and 2-cell mouse embryos fertilized in vitro (IVEE) . The serum was separated by ultrafiltration or gel filtration methods and added in m-KRB medium for culture of IVFE. The developemental ability(cavitation and hatching) of embryos following culture of day 4 and 6 was compared among fractions. Small molecular weight fraction( <3 kDa) significantly inhibited the development of 1-and 2-cell IVFE to the blastocyst stages, compared with other fractions. One-cell IVFE were more sensitively damaged than 2-cell embryos by that fraction and arrested mainly at 2~4 cell stages. Moreover, small amount(<3%,v /v) of the inhibiting fraction acted even with protein rich fraction(100~30 kDa) and arrested the embryonic development. On the other hand, 100~30 kDa fraction promoted the embryonic development and no inhibiting effect was observed at the level of 50%(v /v) in culture medium In the experiment of gel filtraton, =30 kDa fraction showed the highest promoting effect on the embryonic development, but <4 kDa fraction inhibited significantly the development. These results suggest that serum contains not only small molecular weight inhibitory component(s) but also promoting one rather than albumin on embryonic development. And serum can be more effectively used in the IVF program after removal of inhibitory component(s) by one of above separation methods.

  • PDF

Branched-chain Amino Acids Reverse the Growth of Intrauterine Growth Retardation Rats in a Malnutrition Model

  • Zheng, Chuan;Huang, Chengfei;Cao, Yunhe;Wang, Junjun;Dong, Bing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1495-1503
    • /
    • 2009
  • This experiment was conducted to determine the effect of dietary supplementation with BCAA (branched-chain amino acids: leucine, isoleucine and valine) on improving the growth of rats in a malnutritional IUGR (Intrauterine Growth Retardation) model, which was established by feeding restriction. In the experimental treatment, rats were fed purified diets supplemented with BCAA (mixed) during the whole gestation period, while arginine and alanine supplementation were set as the positive and negative control group, respectively. The results showed that, compared to the effect of alanine, BCAA reversed IUGR by increasing the fetus weights by 18.4% and placental weights by 18.0% while fetal numbers were statistically increased. Analysis of gene and protein expression revealed that BCAA treatment increased embryonic liver IGF-I expression; the uterus expressed higher levels of estrogen receptor-$\alpha$ (ER-$\alpha$) and progesterone receptor (PR), and the placenta expressed higher levels of IGF-II. Amino acid analysis of dam plasma revealed that BCAA supplementation effectively enhanced the plasma BCAA levels caused by the feed restriction. BCAA also enhanced the embryonic liver gluconeogenesis by augmenting the expression of two key enzymes, namely fructose-1,6-biphosphatase (FBP) and phosphoenolpyruvate carboxykinase (PEPCK). In conclusion, supplementation of BCAA increased litter size, embryonic weight and litter embryonic weight by improving the dam uterus and placental functions as well as increasing gluconeogenesis in the embryonic liver, which further provided energy to enhance the embryonic growth.

Studies on the Effect of the Protein Constituents of Panax ginseng Root on Cultured Chick Embryonic Brain, Spinal Cord and Skeletal Muscle Cells (인삼 단백성분이 배양한 Chick Embryo의 뇌, 척수, 근육세포에 미치는 효과에 관한 연구)

  • Kim, Young-Choong;Han, Dae-Suk;Huh, Hoon;Ahn, Sang-Mee;Koo, Hyang-Ja
    • YAKHAK HOEJI
    • /
    • v.27 no.2
    • /
    • pp.109-116
    • /
    • 1983
  • The effect of protein constituents of six-year old fresh Panax ginseng root on chick embryonic brain, spinal cord and skeletal muscle dissociation cultures was studied. The protein constituents showed the enhancing effect on cultured brain, spinal cord and skeletal muscle cells. The neurite formation from brain and spinal cord cells and the outgrowth of neurite seemed to be enhanced by almost all of the protein constituents employed for this study. The maturation of skeletal muscle cells was stimulated by the protein constituents. This enhancing effect of the protein constituents was more vivid when brain, spinal cord and skeletal muscle cells were cultured with a medium which did not contain chick embryonic extracts known as an essential component for primary cell culture. The protein fraction having molecular weight range of 1,000 to 5,000 out of all the protein fractions employed for this study showed the most stimulatory effect on cultured brain, spinal cord and skeletal muscle cells.

  • PDF

Apoptosis of Rat Embryonic Midbrain Cells in Ochratoxin A-induced Microcephaly

  • Hong, Jin-Tae;Park, Kui-Lea;Han, Soon-Young;Park, Ki-Sook;Kim, Hyung-Sik;Oh, Se-Dong;Lee, Rhee-Da;Jang, Seung-Jae
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.1
    • /
    • pp.41-45
    • /
    • 2000
  • Induction of DNA fragmentation of rat embryonic midbrain cells was studied to see whether apoptosis plays a role in OTA-induced microcephaly observed in cultured rat whole embryos during embryogenesis. We first cultured whole embryos (prepared from day 9.5 gestation rats) for 48 hrs with OTA and found that OTA induced microcephaly in cultured rat whole embryos. We also examined whether the microcephaly seen in cultured whole embryos is partially related to the increase of apoptosis of undifferentiated embryonic midbrain cells. Embryonic midbrain cells were prepared from day 12 gestation rat embryos, and cultured in the mixture media of Dulbecco's modified eagle's medium nutrient and Ham's F12 (1:1) containing 10% Nuserum, 100 $\mu\textrm{g}$/ml of streptomycin and 100 units/ml of penicillin for 96 hrs. Induction of DNA fragmentation was increased by 0.25-1 $\mu\textrm{g}$/ml OTA in a dose dependent manner in the embryonic midbrain cells. We also tested whether increase of apoptosis by OTA would be associated with change of apoptosis-related proteins (TNF-$\alpha$ and P$^{53}$ ) level in embryonic midbrain cells. OTA also increased TNF-$\alpha$ and P$^{53}$ levels. These results show that OTA induced microcephaly in cultured whole embryos and this effect may be at least a part due to the induction of apoptosis and apoptosis-related protein levels of undifferentiated embryonic midbrain cells.

  • PDF

Effect of 0.5 mM Dibutyryl cAMP on Meiotic Maturation during Different Incubation Time and Embryonic Development Following In Vitro Fertilization or Parthenogenetic Activation in Porcine Oocytes

  • Yu, Il-Jeoung
    • Journal of Embryo Transfer
    • /
    • v.26 no.4
    • /
    • pp.251-256
    • /
    • 2011
  • Presently, the effect of 0.5 mM dibutyryl cAMP (dbcAMP)-supplemented maturation medium during different incubation time on meiotic arrest (germinal vesicle) and resumption (metaphase II) of porcine oocytes and embryonic development of porcine oocytes following in vitro fertilization (IVF) or parthenogenetic activation (PA) was determined. Porcine cumulus oocyte complexes (COCs) were cultured in 0.5 mM dbcAMP for 17, 22, 27, or 42 h, and an additional 22 h without 0.5 mM dbcAMP. The nuclear status was examined at each time point. Oocytes cultured from 39~49 h displayed more than 80% meiotic resumption. More than 85 % of meiotic arrest was presented at 17~22 h. Oocytes were cultured for 22 h with 0.5 mM dbcAMP and additional 22 h without dbcAMP to assess developmental potential following IVF or PA. There were no significant differences in blastocyst rates among the dbcAMPIVF, IVF, dbcAMP-PA, and PA groups, although cleavage rate of IVF group was significantly higher than those of dbcAMP-PA, and PA groups. In conclusion, 0.5 mM dbcAMP influenced meiotic maturation of porcine oocytes depending on incubation time of oocyte, although embryonic development was not improved in both IVF and PA.

Effect of Alpha Lipoic Acid on in vitro Maturation of Porcine Oocytes and Subsequent Embryonic Development after Parthenogenetic Activation

  • Kang, Young-Hun;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.32 no.4
    • /
    • pp.267-274
    • /
    • 2017
  • Alpha lipoic acid (ALA) is a biological membranes compound. As the antioxidant, it decreases the oxidized forms of other antioxidant substances such as vitamin C, vitamin E, and glutathione (GSH). To examine the effect of ALA on the in vitro maturation (IVM) of porcine oocytes, we investigated intracellular GSH and reactive oxygen species (ROS) levels, and subsequent embryonic development after parthenogenetic activation (PA). Intracellular GSH levels in oocytes treated with 50uM ALA increased significantly (P < 0.05) and exhibited a significant (P < 0.05) decrease in intracellular ROS levels compared with the control group. Oocytes matured with 50 uM of ALA during IVM displayed significantly higher cleavage rates (67.8% vs. 83.4%, respectively), and higher blastocyst formation rates and total cell number of blastocysts after PA (31.6%, 58.49 vs. 46.8%, 68.58, respectively) than the control group. In conclusion, these results suggest that treatment with ALA during IVM improves the cytoplasmic maturation of porcine oocytes by increasing the intracellular GSH levels, thereby decreasing the intracellular ROS levels and subsequent embryonic developmental potential of PA.