• Title/Summary/Keyword: Enantiomeric separation

Search Result 38, Processing Time 0.028 seconds

Enantiomeric Separation of Free Amino Acids Using N-alkyl-L-proline Copper(Ⅱ) Complex as Chiral Mobile Phase Additive in Reversed Phase Liquid Chromatography

  • Lee Sun Haing;Oh Tae Sub;Lee Hae Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.280-285
    • /
    • 1992
  • Enantiomeric separation of free amino acids has been achieved by a reversed phase liquid chromatography with addition of a Cu(Ⅱ) complex of N-alkyl-L-proline (alkyl: propyl, pentyl or octyl) to the mobile phase. The amino acids eluted were detected by a postcolumn OPA system. N-alkyl-L-proline was prepared and used as a chiral ligand of Cu(Ⅱ) chelate for the enantiomeric separation. The concentration of the Cu(Ⅱ) chelate, the organic modifier and pH affect the enantiomeric separation of free amino acids. The retention behaviour, varied with change in pH and the concentration of the Cu(Ⅱ) chelate, was different compared with those of the derivatized amino acids. The elution orders between D- and L-forms were consistent except histidine showing that L-forms elute earlier than D-forms. The retention mechanism for the enantiomeric separation can be illustrated by the stereospecificity of the ligand exchange reaction and the hydrophobic interaction between the substituent of amino acids and reversed phase, $C_18$.

Chiral Recognition Models of Enantiomeric Separation on Cyclodextrin Chiral Staionary Phases

  • 이선행;김병학;이영철
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.305-309
    • /
    • 1995
  • The enantiomeric separation of several amino acid derivatives by reversed-phase liquid chromatography using two (R)-and (S)-naphthylethylcarbamate-β-cyclodextrin(NEC-β-CD) bonded stationary phases was studied to illustrate the chiral recognition model of the enantiomeric separation. The retention and enantioselectivity of the chiral separations with (R)-and (S)-NEC-β-CD bonded phases were compared with similar separations with the native β-CD stationary phases. Especially, the enantioselectivity and elution orders between the derivatized amino acid enantiomers are carefully examined. These results can be illustrated by the chiral recognition models involving inclusion complexation, π-π interaction, and/or hydrophobic interaction. Inclusion complexation and hydrophobic interaction of the naphthyl group of the NEC moiety seem to be major chiral recognition components in the enantiomeric separation of 2,4-dinitrophenyl amino acids and dabsyl amino acids on (R)-and (S)-NEC-β-CD columns. For dansyl amino acids, only the inclusion complexation is the dominant factor. Three different chiral recognition models containing π-π interaction, inclusion complexation and hydrogen bonding were proposed for the separation of the 3,5-dinitrobenzoyl amino acid enantiomers, depending on the size and shape of amino acids.

Accurate Chiral Discrimination of Acidic- and Amino acidic-Chiral Drugs by Indirect GC and Direct CE Enantiomeric Separation Methods

  • Kim, Kyoung-Rae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.167-168
    • /
    • 2002
  • Because of the differences between biological and pharmacological properties of chiral drugs in human body, accurate determinations of their optical purities have been in great need. There are two major approaches in chiral separation: indirect method performed under achiral condition, and direct method under the chiral environment. We have been conducting chiral separation of acidic chiral compounds and also amino acidic chiral compounds employing indirect GC methods and direct CE enantiomeric separation methods. (omitted)

  • PDF

Liquid Chromatographic Enantiomer Separation of α-Amino Acid Esters as Nitrobenzoxadiazole Derivatives Using Polysaccharide-Derived Chiral Stationary Phases

  • Islam, Md. Fokhrul;Lee, Wonjae
    • Journal of Integrative Natural Science
    • /
    • v.8 no.2
    • /
    • pp.111-116
    • /
    • 2015
  • Liquid chromatographic enantiomer separation of ${\alpha}$-amino acid esters as nitrobenzoxadiazole (NBD) derivatives was performed using several chiral stationary phases (CSPs) based on polysaccharide derivatives under fluorescence detection. For enantiomer separation by normal HPLC, the non-aqueous derivatization method of ${\alpha}$-amino acid esters for NBD analytes was introduced. Among the six CSPs used in this study, the performance of Chiralpak IA was superior for enantiomer resolution of NBD derivatives of several ${\alpha}$-amino acid methyl esters. Also the convenient analytical method using polysaccharide-derived CSPs developed in this study was applied to determine the optical purity of ${\alpha}$-amino acids esters. It was investigated that the enantiomeric impurity levels of 0.02-1.73% were found after determination of enantiomeric purities of several commercially available L-amino acid methyl esters. It is expected to be quite useful for enantiomer separation of other ${\alpha}$-amino acid esters as NBD derivatives by normal HPLC.

Enantiomeric Separation of Amino Acids Using N-alkyl-L-proline Coated Stationary Phase

  • Lee Sun Haing;Oh Tae Sub;Lee Hae Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.285-289
    • /
    • 1992
  • Enantiomeric separation of underivatized amino acids using N-alkyl-L-proline (octyl, dodecyl or hexadecyl) coated HPLC has been accomplished. The anchoring N-alkyl groups of L-proline provides a permanent adsorption of there solving chiral agent on the hydrophobic interface layer of a reversed phase. The factors controlling retention and enantioselectivity such as the Cu(II) concentration, pH of the eluent, the type and concentration of organic modifier in the hydroorganic eluent, and extent of coating were examined. The elution orders between D- and L-amino acids were consistent, L-forms eluting first, except histidine and asparagine. The extremely high enantioselectivity $(\alpha$ upto 13 for proline) is observed. The retention mechanism for the chiral separation can be illustrated by a complexation and hydrophobic interaction.

Chiral Separation of Aromatic Acids by Capillary Electrophoresis Using HP $\beta$-Cyclodextrin as the Chiral Selector

  • La, Soo-Kie;Kim, Ji-Young;Kim, Jung-Han;Kim, Kyoung-Rae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.399.2-399.2
    • /
    • 2002
  • Capillary electrophoretic direct chiral separation method is described for the determination of the absolute configuration of chiral aromatic acids, The enantiomeric separation was achieved by capillary electrophoresis using HP $\beta$-cyclodextrin (CD) as the chiral selector. The effect of CD concentration was investigated to optimize the chiral separation and resolution. When applied to microbial culture fluid. the present method allowed positive identification of chiral aromatic acids and their chirality as well.

  • PDF

Enantiomeric Purity Test of Bevantolol by Reversed-Phase High Performance Liquid Chromatography after Derivatization with 2,3,4,6-tetra-O-acetyl-$\beta$-D-glucopyranosyl Isothiocyanate

  • Kim, Kyeong-Ho;Heo, Sung-Young;Hong, Seon-Pyo;Lee, Beom-Chan
    • Archives of Pharmacal Research
    • /
    • v.23 no.6
    • /
    • pp.568-573
    • /
    • 2000
  • A reversed-phase high-performance liquid chromatographic method was developed to determine the optical purity of bevantolol enantiomers. (S)-(-)-Menthyl chloroformate((-)-MCF), (S)-(-)-$\alpha$-methylbenzyl isocyanate((-)-MBIC) and 2,3,4,6-tetra-O-acetyl-$\beta$-D-glucopyranosyl isothiocyanate(GITC), which can react with the secondary amine group of bevantolol were investigated as chiral derivatization reagents. Among them indirect chiral HPLC method using CITC gave the best result. The derivatization proceeded quantitatively within 20 min at room temperature. Separation of the enantiomers as diastereomers was achieved by reversed-phase HPLC within 20min using ODS column. Different ratios of (S)-(-)-bevantolol and (R)-(+)-bevantolol were prepared. Enantiomeric separation of these mixtures took place on a chiralcel OD column or, after derivatization with GITC, on a ODS column. No racemization was found during the experiment. This method allowed determination of 0.05% of either enantiomer in the presence of its stereoisomer and method validation showed adequete linearity over the required range.

  • PDF