• Title/Summary/Keyword: Endoglucanase

Search Result 102, Processing Time 0.028 seconds

Overproduction of Pseudomonas sp. LBC505 Endoglucanase in Escherichia coli and Bacillus subtilis

  • CHUNG, YOUNG-CHUL;KYEONG-SOOK KIM;YANG-WOO KIM;SUNG-SIK CHUN;NACK-KIE SUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.18-21
    • /
    • 1995
  • Endoglucanase gene of Pseudomonas sp. LBC505 was previously cloned in pUCl9 to yield plasmid pLC1. overproduction of endoglucanase was attempted by following ways. First, the endoglucanase gene of Pseudomonas sp. LBC505 cloned in pUCl9(pLC1) was tandemly inserted, step by step, into a expression vector pKK223-3 in a directly repeated form to enhance productivity of endoglucanase. Escherichia coli containing pKCC30 among the resulting plasm ids showed the higher yield of the endoglucanase. Ecoli harboring pKCC30 which had three inserted endoglucanase genes expressed about 12.3 times as much CMCase activity as Ecoli harboring pLCl. Second, the endoglucanase gene was subcloned into Bacillus subtilis expression vector pgnt41 for both overproduction and extracellular secretion of the endoglucanase. A resulting plasmid pgntc15 in Bacillus subtilis expressed 4.3-fold higher levels of CMCase activity than that of E.coli harboring pLCl and the endoglucanase produced was entirely secreted into the culture medium.

  • PDF

Expression and Secretion of Trichodema Endoglucanase in Saccharomyces cerevisiae. (Saccharomyces cerevisiae에서 Trichoderma Endoglucanase의 발현과 분비)

  • 신동하;김재범;김병우;남수완;신지원;정대균;정춘수
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.406-412
    • /
    • 1998
  • The endoglucanase gene, egl6, of Trichoderma sp. was connected with the yeast ADH1 promoter, and the resultant plasmid, pVT-C4, was introduced into three S. cerevisiae host strains (YNN27, 2805, and SEY2102). Among each 80 transformants, the cell growth and expression level of endoglucanase were compared in test-tube cultivation, and three respective transformants for each host cells showing the highest expression level and cell growth were selected. When three recombinant yeast cells were batchwise cultivated for 48 hr in flask, the total activities of endoglucanase expressed were about 1140 unit/l with 2805/pVT-C4, 1020 unit/l with SEY2102/pVT-C4, and 590 unit/l with YNN27/pVT-C4. Irrespective of host strain, about 80% of the expressed endoglucanase was detected in the extracellular medium. In addition, it was also found that the recombinant enzyme was secreted into the culture medium as two major forms of lightly and heavily glycosylated proteins.

  • PDF

Simultaneous Expression of Pseudomonas sp. Endo-1,4$\beta$-Glucanase and $\beta$-1,4=Glucisidase Gene in Escherichia coli and Saccharomyces cerevisiae (Pseudomonas sp. Endo-1,4-$\beta$-Glucanase와 $\beta$-1,4-Glucosidase 유전자의 대장균 및 효모에서의 동시 발현)

  • Kim, Yang-Woo;Chun, Sung-Sik;Chung, Young-Chul;Sung, Nack-Kie
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.652-658
    • /
    • 1995
  • We attempted simultaneous expression of genes coding for endoglucanase and $\beta $-glucosidase from Pseudomonas sp. by using a synthetic two-cistron svstem in Escherichia coli and Saccharomyces cerevisiae. Two-cistron system, 5'--tac promoter-endoglucanase gene--$\beta $-glucosidase gene-- 3', 5'-tac promoter--$\beta $-glucosidase gene--endoglucanase gene--3' and 5'-tac promoter--endoglucanase gene--SD sequence--$\beta $-glucosidase gene--3, were constructed, and expressed in E. coli and S. cerevisiae. The E. coli and S. cerevisiae contained two-cistron system produced simultaneously endoglucanase and $\beta $-glucosidase. The recombinant genes contained the bacterial signal peptide sequence produced low level of endoglucanase and $\beta $-glucosidase in S. cerevisiae transformants: Approximately above 44% of two enzymes was localized in the intracellular fraction. The production of endoglucanase and $\beta $-glucosidase in veast was not repressed in the presence of glucose or cellobiose. The veast strain contained recombinant DNA with two genes hydrolyzed carboxvmethyl cellulose, and these endoglucanase and $\beta $-glucosidase degraded CMC synergistically to glucose, cellobiose and oligosaccharide. This result suggests the possibility of the direct bioconversion of cellulose to ethanol by the recombinant yeast.

  • PDF

Simultaneous Overpexpression of Genes Encoding Cellulose- and Xylan-Degrading Enzymes through High Density Culture of a Recombinant Yeast Cell (재조합 효모 세포의 고농도배양을 통한 섬유소와 자일란 분해효소 유전자의 동시 과발현)

  • Kim, Yeon-Hee;Heo, Sun-Yeon;Kim, Gun-Do;Nam, Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.390-394
    • /
    • 2018
  • For the coexpression of endoxylanase and endoglucanase genes in yeast Saccharomyces cerevisiae, the genes were separately inserted downstream of the yeast ADH1 promoters, resulting the plasmid pAGX3 (9.83 kb). In the batch culture on YPD medium of the yeast transformant, S. cerevisiae SEY2102/pAGX3, the total activities of the enzymes reached about 7.91 units/ml for endoxylanase and 0.43 units/ml for endoglucanase. In the fed-batch culture with intermittent feeding of yeast extract and glucose, the total activities of 24.9 units/ml for endoxylanase and 0.84 units/ml for endoglucanase were produced which were about 3.1-fold and 2.0-fold increased levels, respectively, compared to those of the batch culture. Most of endoxylanase and endoglucanase activities were found in the extracellular media. This recombinant yeast could be useful for the development of simultaneous saccharification bioprocess of the cellulose and xylan mixture.

Secretion of Bacillus Endoglucanase in Saccharomyces cerevisiae by Its Own Signal Sequence

  • Han, Yun-Jeong;Kang, Dae-Ook;Lee, Sang-Choon;Kim, Bo-Yeon;Suh, Hyun-Hyo;Kim, Jin-Mi;Mheen, Tae-Ick
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.24-29
    • /
    • 1994
  • To examine whether the signal sequence of Bacillus endo-1, 4-glucanase can act functionally in a yeast, a lower eucaryote, two recombinant plasmids were constructed and introduced into Saccharomyces cerevisiae: recombinant plasmid pGCMC10 containing the complete signal sequence of Bacillus endoglucanase, and pGCMC11 without the signal sequence. Secretion of endoglucanase into culture medium was obtained with the yeast transformant containing plasmid pGCMC10. The secreted endoglucanase was glycosylated and was apparently processed to be about 36 kilodaltons (KDa) and 43KDa proteins. The glycosylated endoglucanase from yeast transformant was more thermostable than the nonglycosylated endoglucanase from Escherichia coli transformant.

  • PDF

Improvement of Cellulase Activity Using Error-Prone Rolling Circle Amplification and Site-Directed Mutagenesis

  • Vu, Van Hanh;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.607-613
    • /
    • 2012
  • Improvement of endoglucanase activity was accomplished by utilizing error-prone rolling circle amplification, supplemented with 1.7 mM $MnCl_2$. This procedure generated random mutations in the Bacillus amyloliquefaciens endoglucanase gene with a frequency of 10 mutations per kilobase. Six mutated endoglucanase genes, recovered from six colonies, possessed endoglucanase activity between 2.50- and 3.12-folds higher than wild type. We sequenced these mutants, and the different mutated sites of nucleotides were identified. The mutated endoglucanase sequences had five mutated amino acids: A15T, P24A, P26Q, G27A, and E289V. Among these five substitutions, E289V was determined to be responsible for the improved enzyme activity. This observation was confirmed with site-directed mutagenesis; the introduction of only one mutation (E289V) in the wild-type endoglucanase gene resulted in a 7.93-fold (5.55 U/mg protein) increase in its enzymatic activity compared with that (0.7 U/mg protein) of wild type.

Optimization of Endoglucanase Production from Fomitopsis pinicola Mycelia (Fomitopsis pinicola 균사체로부터 Endoglucanase의 최적생산)

  • Gu, Ji-Min;Park, Sang-Shin
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.145-152
    • /
    • 2013
  • The culture conditions to maximize the production of endoglucanase (EC 3.2.1.4) from the brown rot fungus Fomitopsis pinicola MKACC 54347 mycelia were investigated. Among the tested media for endoglucanase production, Mandel's mineral salts medium (MSM; 1% cellulose, 0.1% peptone, 0.14% $(NH_4)_2SO_4$, 0.03% urea, 0.2% $KH_2PO_4$, 0.03% $MgSO_4{\cdot}7H_2O$, 0.03% $CaCl_2$, and 0.1% trace metal solution (19.8 mM $FeSO_4$, 13.0 mM $MnSO_4$, 12.2 mM $ZnSO_4$, and 15.4 mM $CoCl_2$)) produced the highest activity of the enzyme. To optimize the medium composition for enzyme activity, the effects of various carbon, nitrogen, phosphorus, and inorganic sources were investigated in MSM. Maximal enzyme production was accomplished using a medium containing 2% carboxymethyl cellulose (CMC), 2% yeast extract, 0.2% $KH_2PO_4$, 0.03% $MnSO_4$, and 0.3% trace metal solution. Different physiological conditions, like incubation period and temperature, were also examined to assess their influence on enzyme production. Enzyme production from F. pinicola reached its highest level after cultivation for 8 days at $25^{\circ}C$. Nondenaturing polyacrylamide gel electrophoresis (PAGE), followed by the endoglucanase activity staining using CMC as the substrate, was performed to identify the endoglucanase under the culture conditions studied. Zymogram analysis of the culture supernatant revealed an endoglucanase band with a molecular mass of 52 kDa. The optimum pH and temperature for enzyme activity were $55^{\circ}C$ and pH 5.0, respectively.

The Degradation of Paper Cultural Properties by Cellulase (셀룰라아제에 의한 지류 문화재의 분해)

  • 장영훈
    • KSBB Journal
    • /
    • v.17 no.6
    • /
    • pp.549-554
    • /
    • 2002
  • The hydrolysis of old book(Hanji) was performed using endoglucanase Ⅰ(endo Ⅰ), and exoglucanase II(exe II) and their mixtures purified from Trichoderma viride cellulase. The optimum degradation of old book(Hanji) with endo Ⅰ, exo II and endo-exo mixture(Ⅰ:Ⅰ) were exhibited at pH 4.5, 5.5, 5.0, respectively. Maximum degradations using endo Ⅰ, exo II and endo-exo mixture(Ⅰ:Ⅰ) occurred at 50$\^{C}$. The yield decreased an increasing the enzyme concentration. Especially, the yield was lowest for treatment with the endo Ⅰ-exo II mixture(Ⅰ:Ⅰ), which may be regarded as being due to a synergistic action of the cellulase components. Physical strength increased with increasing exo II concentration, and decreased with increasing concentration of endoglucanase Ⅰ. These results indicated that the degradation of old book(Hanji) depends largely upon the action of endoglucanase. Therefore, the most effective method of conserving paper cultural properties is to repress the action of endoglucanase.

Molecular Characterization of a ${\beta}$-1,4-Endoglucanase Gene from Bacillus subtilis H12

  • Oh, Jin-Hwan;Cha, Jeong-Ah;Yoon, Min-Ho
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.299-304
    • /
    • 2008
  • A ${\beta}$-1,4-endoglucanase gene from Bacillus subtilis H12 was cloned into Escherichia coli JM109 (pBC8) and sequenced. The endoglucanase gene with an insert DNA of 2.5 kb possessed an open reading frame of 1,500 bp encoding a mature protein of 499 amino acids with a calculated molecular mass of 55 kDa. The deduced amino acid sequence showed similarity to those of the known neutral cellulase genes of B. subtilis PAP115 (99.2%) and BSE616 (97.8%), as well as the alkaline gene of Bacillus sp. N4 (55.1%). The endoglucanase activity expressed by E. coli (pBC8) was localized in the periplasmic fraction (80%) and the cytoplasmic fraction (20%). An endoglucanase was purified from the periplasmic fraction by performing gel filtration and anion exchange chromatography. The molecular weight of the purified enzyme was estimated to be 31 kDa by SDS-PAGE, and the maximum activity occurred at pH 7 and $40^{\circ}C$. The enzyme easily hydrolyzed soluble substrates such as carboxymethyl cellulose and barely ${\beta}$-glucan, whereas the sigmacell and xylan, the known insoluble substrates, were not entirely hydrolyzed.

Effects of Endoglucanase and Exoglucanase from Trichoderma viride on Brightness and Physical Properties of Deinked Old Newsprint (Trichoderma viride로부터 분리한 Endoglucanase 및 Exoglucanase가 탈묵 펄프의 백색도 및 물리적 강도에 미치는 영향)

  • 김동원;정영규장영훈손기향
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.718-725
    • /
    • 1996
  • Old newsprint was deinked with endoglucanase, exoglucanase and their various compositions from Trichoderma viride. The yield decreased with an increase in enzyme concentration. Especially, it was the lowest in the treatment of endo-exo mixture(1:1). It may be regarded as a synergistic actions of the cellulase components. The brightness was the highest in pulp deinked with endo-exo mixture(1:1). Maximum brightness was observed when 0.5mg/mL of the endo-exo mixture was used. The physical strength increased with increasing concentration in exoglucanase. But, it decrease with increasing concentration in endoglucanse and endo-exo mixture(1:1). Also, we investigated the yield, brightness and physical strength of endoglucanase in combination with exoclucanase(12:1, 8:1, 4:l, 1:1, 1:4, 1:8, 1:12). Maximal deinking conditions, obtained at a specific optimal ratio of endoglucanase to exoglucanse are as follow ; 12:1 for yield, 12:1 for brightness, 4:1 for tensile strength, 12:1 for bursting strength, and 8:1 for tearing strength. These results indicated that the deinking depended largely upon the action of endoglucanase. Exoglucanase was occupying more than 60% of the total crude cellulase contents. Therefore, the most effective deinking must repress the action of exoglucanase.

  • PDF