• Title/Summary/Keyword: Endoplasmic reticulum signal peptide

Search Result 7, Processing Time 0.083 seconds

Identification of an antimicrobial peptide from human methionine sulfoxide reductase B3

  • Kim, Yong-Joon;Kwak, Geun-Hee;Lee, Chu-Hee;Kim, Hwa-Young
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.669-673
    • /
    • 2011
  • Human methionine sulfoxide reductase B3A (hMsrB3A) is an endoplasmic reticulum (ER) reductase that catalyzes the stereospecific reduction of methionine-R-sulfoxide to methionine in proteins. In this work, we identified an antimicrobial peptide from hMsrB3A protein. The N-terminal ER-targeting signal peptide (amino acids 1-31) conferred an antimicrobial effect in Escherichia coli cells. Sequence and structural analyses showed that the overall positively charged ER signal peptide had an Argand Pro-rich region and a potential hydrophobic ${\alpha}$-helical segment that contains 4 cysteine residues. The potential ${\alpha}$-helical region was essential for the antimicrobial activity within E. coli cells. A synthetic peptide, comprised of 2-26 amino acids of the signal peptide, was effective at killing Gram-negative E. coli, Klebsiella pneumoniae, and Salmonella paratyphi, but had no bactericidal activity against Gram-positive Staphylococcus aureus.

Expression of Lymphocyte ADP-ribosyltransferase in Rat Mammary Adenocarcinoma Cells (임파구 ADP-ribosyltransferase의 rat mammary adenocarcinoma cell에서의 발현)

  • 김현주
    • Journal of Life Science
    • /
    • v.8 no.1
    • /
    • pp.102-108
    • /
    • 1998
  • The nascent from of glycosylphosphatidylinositol (GPI)-anchored proteins possesses both amino and carboxy terminal hydrophobic signal sequences to direct processing in the endoplasmic reticulum (ER). Following cleavage of the amino-terminal signal peptide, the carboxy-terminal peptide is processed. Previously, mouse lymphocyte NDA: agrinine ADP-ribosyltransferase (Yac-1) was cloned and the deduced amino acid sequence of the Yac-1 transferase contained hydrophobic amino and carboxy termini, consistent with known signal sequences of GPI-anchored proteins. This tranferase was present on the surface of NMU (rat mammary adenocarcinoma) cells transfected with the wildtype cDNA and was released with phosphatidylinositol-specific phosphilpase C. Expression of the mutant protein, lacking the carboxy terminal hydrophobic sequence, resulted in the peoduction of soluble, secreted from of the transferase. This result shows that carboxy terminal sequence is important for GPI-attachment.

  • PDF

Translocation of Seed Storage Proteins into Microsomes Isoalted from Rice Endosperm Cells

  • Kim, Woo Taek
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.293-299
    • /
    • 1994
  • Developing rice endosperm cells display two morphologically distinct rough endoplasmic reticulum (ER) membranes, the cisternae ER (C-ER) and theprotein body ER (PB-ER), the latter delimiting the prolamine protein bodies. We (Li et al., 1993) have recently shown that the storage protein mRNAs are not randomly distributed on these ER types; the C-ER is enriched for glutelin mRNAs, whereas the PB-ER harbors predominantly prolamine transcripts. To address whether these ER types have differnet capacities to translate these mRNAs and translocate their proteins into the lumen, a microsomal fraction enriched in C-ER vesicles was prepared from devleoping rice seeds. When present in an in vitro translatin system, the microsomes were able to proteolytically remove the signal peptide and internalize both preproglutelin and preprolamine within the microsomal vesicles. Of the two species, preprolamine was more effectively translocated and processed. These results suggest that the C-ER has the capacity to recognize and bind both storage protein mRNAs during protein synthesis. Moreover, efficient translocation and processing of glutelin requires additional factors that are deficient or absent in the in vitro system.

  • PDF

Expression and Production of Human Granulocyte Colony Stimulating Factor (G-CSF) in Silkworm Cell Line (누에세포를 이용한 인간 G-CSF의 발현 및 생산)

  • Park, Jeong-Hae;Jang, Ho-Jung;Kang, Seok-Woo;Goo, Tae-Won;Chung, Kyung-Tae
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1577-1581
    • /
    • 2010
  • Granulocyte colony stimulating factor (G-CSF) is a hematopoietic cytokine that stimulates bone marrow cells to proliferate and differentiate into granulocytes. G-CSF is approved and used for therapeutic purposes. The endoplasmic reticulum (ER) signal peptide of hG-CSF was replaced with silkworm-specific signal peptides to express and efficiently secrete recombinant hG-CSF by silkworm cells. Plasmids that contain cDNAs for hG-CSF and hG-CSF fused with silkworm- specific signal peptides of prophenoloxidase activating enzyme (PPAE), protein disulfide isomerase (PDI), and bombyxin (BX) were constructed. The G-CSF protein was expressed in insect cell line BM5 and was detected by western blot analysis. The cells transfected with plasmids containing rhG-CSF genes with silkworm-specific signal sequences released mature rhG-CSF protein more efficiently than the cells transfected with pG-CSF, the plasmid containing human G-CSF gene, including its own signal sequence. The production of hG-CSF reached maximal level at four days post-transfection and remained at a high level until 7 days post-transfection. These data demonstrate that the modification of the human G-CSF mimic to insect proteins synthesized in ER greatly improves the production of the protein.

Cloning and Expression of Human Liver UDP-Glucuronosyltransferase cDNA, UDPGTh2

  • Dong, Misook;Owens, Ida-S.;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.459-464
    • /
    • 1997
  • The human liver cDNA clone UDPGTh2, encoding a liver UDP-glucuronosyltransferase (UDPGT) was isolated from a .gamma. gt 11 cDNA library by hybridization to mouse transferase cDNA clone, UDPGTm1. UDPGTh2 encoded a 529 amino acid protein with an amino terminus membrane-insertion signal peptide and a carboxyl terminus membrane-spanning region. There were three potential asparagine-linked glycosylation sites at residues 67, 68, and 315. In order to obtain UDPGTh2 protein encoded from cloned human liver UDP-glucuronosyltransferase cDNA, the clone was inserted into the pSVL vector (pUDPGTh2) and expressed in COS 1 cells. The presence of a transferase with Mr-52,000 in transfected cells cultured in the presence of $[^{35}S]$ methionine was shown by immunocomplexed products with goat antimouse transferase IgG and protein A-Sepharose and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The expressed UDPGT was a glycoprotein as indicated by electrophoretic mobility shift in Mr-3,000-4,000 when expressed in the presence of tunicamycin. The extent of glycosylation was difficult to assess, although one could assume that glycosyl structures incorporated at the level of endoplasmic reticulum were always the core oligosaccharides. Thus, it is likely that at least two moieties inserted can account for the shift of Mr-3,000-4,000. This study demonstrates the cDNA and deduced amino acid sequence of human liver UDP-glucuronosyltransferase cDNA, UDPGTh2.

  • PDF

High-yield Production of Functional Human Lactoferrin in Transgenic Cell Cultures of Siberian Ginseng(Acanthopanax senticosus)

  • Jo, Seung-Hyun;Kwon, Suk-Yoon;Park, Doo-Sang;Yang, Kyoung-Sil;Kim, Jae-Whune;Lee, Ki-Teak;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.442-448
    • /
    • 2006
  • Human lactoferrin (hLf) is an iron-binding glycoprotein that has been considered to play many biological roles in the human, including the stimulation of the immune system, antimicrobial and anti-inflammatory effects, and regulation of iron absorption. We generated transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing a functional hLf protein using the signal peptide sequence from the endoplasmic reticulum and driven by an oxidative stress-inducible SWPA2 promoter which is highly expressed in plant cell cultures. The production of hLf increased proportionally to cell growth and showed a maximal level (up to 3.6% of total soluble protein) at the stationary phase in suspension cultures. Full-length hLf protein was identified by immunoblot analysis in transgenic cell cultures of Siberian ginseng. Recombinant hLf (rhLf) was purified from suspension cells of Siberian ginseng by ammonium sulfate precipitation, cation-exchange and gel filtration chromatography. N-terminal sequences of rhLf were identical to native hLf (nhLf). The overall monosaccharide composition of rhLf showed the presence of plant specific xylose while sialic acid is absent. Antibacterial activity of purified rhLf was higher than that of nhLf. Taken together, we anticipate that medicinal Siberian ginseng cultured cells, as demonstrated by this study, will be a biotechnologically useful source for commercial production of functional hLf not requiring further purification.

Transgenic Siberian Ginseng Cultured Cells That Produce High Levels of Human Lactoferrin (인체 락토페린 생산 형질전환 가시오갈피 배양세포)

  • Jo Seung-Hyun;Kwon Suk-Yoon;Kim Jae-Whune;Lee Ki-Teak;Kwak Sang-Soo;Lee Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.209-215
    • /
    • 2005
  • Lactoferrin is an iron-binding glycoprotein with many biological roles, including the protection against microbial and virus infection, stimulation of the immune system. We developed the transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing the human lactoferrin (hLf) protein following Agrobacterium tumefaciens-mediated transformation. A construct containing a targeting signal peptide from tobacco endoplasmic reticulum fused to hLf cDNA under the control of an oxidative stress-inducible SWPA2 promoter was engineered. Transgenic Siberian ginseng cultured cells to produce a recombinant hLf protein were successfully generated and confirmed by PCR and Southern blot analysis. ELISA and western blot analysis showed that full length-hLf protein was synthesized in the transgenic cells. The production of hLf increased proportionally to cell growth and reached a maximal (up to 3% of total soluble proteins) at the stationary phase. These results suggest that the transgenic Siberian ginseng cultured cells in this study will be biotechnologically useful for the commercial production of medicinal plant cell cultures to produce hLf protein.