• Title/Summary/Keyword: Engine Oil Environment

Search Result 91, Processing Time 0.022 seconds

NUMERICAL ANALYSIS ON INTERNAL FLOW OF OIL JET COOLING THE PISTON (피스톤 냉각용 Oil jet 유동해석)

  • Kwon J.H.;Jung H.Y.;Lee J.H.;Choi Y.H.;Lee Y.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.219-222
    • /
    • 2005
  • Recently, the interest of the engine capacity and environment of the atmosphere is increasing, so the researches for the engine capacity have been conducted for a long time. But the internal environment of an automotive engine is very severe. A piston is exposed to combustion gas of over $2000^{\circ}C$ and strong friction is occurred by high speed motion in the cylinder. The fraction between piston and wall of the cylinder causes the increase of temperature in the engine. The temperature of the engine has an effect on the engine capacity. If the temperature is high, the capacity of the engine is low. So we have to maintain the optimum temperature. To maintain the optimum temperature, the enough flow rate of the engine oil is needed. The oil jet is used to control the flow rate of the engine oil and supply the engine oil to the piston and cylinder. The purpose of this study is to check the mass flow rate of the engine oil and the characteristics of internal flow of the oil jet. Flow pattern of the engine oil is very important because it concludes the loss in the oil jet. This study is the previous research about the oil jet and we will consider the movement of the ball check valve to get more accuracy result.

  • PDF

Characteristics of Variant Dielectric Constants With Respect to Internal Combustion Engine Oil States (내연기관의 엔진오일상태에 대한 유전율 변화 특성)

  • Kim, Dong-Min;Kim, Yong-Ju;Lee, Seung-Hee
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.19-21
    • /
    • 2012
  • The engine oil life of internal combustion engine is shorted by the thermal effect and that causes air pollution. In order to measure the status of engine oil accurately, the exchange of new oil extends the life of combustion engine and reduces environmental pollution. Capacitance probes, such as engine oil and fluids can be used to measure the dielectric constant. In this paper, the degradation of engine oil varies depending on the degree of dielectric properties was analyzed. Depending on the state of the oil, the variant capacitance of the probe was measured by LCR Meter, respectively, and then the permittivity of oil was calculated. In addition, according to the size of the probe by measuring the change in capacitance measurement, accuracy of dielectric constant are presented. According to oil contaminated with the more increase in dielectric constant, we can decide that contaminated oil is available.

Theoretical Characteristics of the Probe with Respect to the Engine Oil States (엔진오일 상태에 대한 프로브의 이론 특성)

  • Kim, Young-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.22-24
    • /
    • 2012
  • Depending on the status of the engine oil, the dielectric constant is changed. Dielectric constant of oil is related to the characteristic impedance of the probe and the characteristic impedance of the probe determines the reflected signal. In this paper, we derive an equivalent circuit of the probe and using the dielectric constant obtained by measuring the capacitance, the theoretical reflection coefficient of the probe was calculated. In the results, if the engine oil is deteriorated, we can see that the reflection coefficient is increased.

Implementation of the Probe System with Respect to the Engine Oil States Inspection (엔진오일 상태점검을 위한 프로브 시스템 구현)

  • Kim, Young-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.25-29
    • /
    • 2012
  • In this paper, in order to measure the degree of degradation using the reflection coefficient of the probe, the measuring circuit is designed. we put pulse signal into the probe and measure the reflected signal in the circuit. As the condition of engine oil degradation, we can see that the reflected signal was increased and as the engine oil temperature increases, a phenomenon shows that the degradated dielectric constant is decreased. Finally, the theoretical values and measured values of the reflection coefficients of the probe are analyzed.

A Study on Characteristics of Rice Bran Oil as an Alternative Fuel in Diesel Engine(I) (디젤기관의 대체연료로서 미장유의 특성 연구(I))

  • 오영택;최승훈;김승원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2002
  • Lately, our world is faced with very serious problems related to the increased air pollution of the exhaust emissions from automobiles. In particular, the exhaust emissions of diesel engines are recognized as a main cause which strongly influence environment. Lots of researchers have attempted to develop various alternative fuels to reduce these harmful emissions in diesel engine. The purpose of this investigation is to evaluate the possibility of esterfied rice bran oil for diesel fuel substitution in a naturally aspirated D. 1. diesel engine, and also find means to reduce smoke emissions in esterfied rice bran oil combustion. The smoke emission of esterfied rice bran oil is reduced remarkably in comparison with commercial gas oil, that is, it was reduced approximately 58.2% at 2500rpm. But, power, torque and brake specific energy consumption didn't have no large differences. It was concluded that esterfied rice bran oil can utilize effectively as an alternative and renew- able fuel fur diesel engine.

Research of Reliability Measures of Engine Oil Pan through Reliability Method (신뢰성 기법을 통한 Engine oil pan의 신뢰성척도 연구)

  • Kim, Jang-su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.4
    • /
    • pp.209-214
    • /
    • 2009
  • Usually, it says that reliability is failure rate achieved by required functions for some period under limited use environment conditions. The reliability can be researched by automotive part or system module and it can be affected by using environment condition, such as using atmosphere temperature and using user's behavior. Also, the time can be influence on the reliability. Recently, the oil leakage from eng oil pan was raised by customer in the field. So, there is the purpose of this paper that research predicting the reliability of eng oil pan efficiently by using reliability method described below.

  • PDF

A Study on the Characteristics of Exhaust Emissions by Biodiesel Blend Waste Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐혼합유의 배기배출물특성에 대한 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.90-95
    • /
    • 2015
  • Recently worldwide concern and research is being actively conducted on green energy which can reduce environmental pollution. A plant such as the natural rapeseed oil, soybean oil, palm, etc. is used as a bio source in home and industry. Biofuels is a sustainable fuel having economically benefits and decreasing environmental pollution problems caused due to fossil fuel, and it can be applied to the conventional diesel engine without changing the existing institutional structure. Waste vegetable oil contains a high cetane number and viscosity component, the low carbon and oxygen content. A lot of research is progressing about the conversion of waste vegetable oil as renewable clean energy. In this study, waste oil was prepared to waste cooking oil generated from the living environment, and applied to diesel engine to confirm the possibility and cost-effectiveness of biodiesel blend waste oil. As a result, brake specific fuel consumption and NOx was increased, carbon monoxide and soot was decreased.

Exhaust emissions of a diesel engine using ethanol-in-palm oil/diesel microemulsion-based biofuels

  • Charoensaeng, Ampira;Khaodhiar, Sutha;Sabatini, David A.;Arpornpong, Noulkamol
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.242-249
    • /
    • 2018
  • The use of palm oil and diesel blended with ethanol, known as a microemulsion biofuel, is gaining attention as an attractive renewable fuel for engines that may serve as a replacement for fossil-based fuels. The microemulsion biofuels can be formulated from the mixture of palm oil and diesel as the oil phase; ethanol as the polar phase; methyl oleate as the surfactant; alkanols as the cosurfactants. This study investigates the influence of the three cosurfactants on fuel consumption and exhaust gas emissions in a direct-injection (DI) diesel engine. The microemulsion biofuels along with neat diesel fuel, palm oil-diesel blends, and biodiesel-diesel blends were tested in a DI diesel engine at two engine loads without engine modification. The formulated microemulsion biofuels increased fuel consumption and gradually reduced the nitrogen oxides ($NO_x$) emissions and exhaust gas temperature; however, there was no significant difference in their carbon monoxide (CO) emissions when compared to those of diesel. Varying the carbon chain length of the cosurfactant demonstrated that the octanol-microemulsion fuel emitted lower CO and $NO_x$ emissions than the butanol- and decanol-microemulsion fuels. Thus, the microemulsion biofuels demonstrated competitive advantages as potential fuels for diesel engines because they reduced exhaust emissions.

Microstructure and Wear Properties in an Engine Oil Environment of Extruded Hyper-eutectic Al-15wt.%Si Alloy and Gray Cast Iron (과공정 Al-15wt.%Si 압출재와 회주철의 미세조직 및 엔진 오일 환경에서의 마모 특성)

  • Kang, Y.J.;Kim, J.H.;Hwang, J.I.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.339-346
    • /
    • 2018
  • This study investigated the microstructure and wear properties of extruded hyper-eutectic Al-Si (15wt.%) alloy in an engine oil environment. The wear mechanism of the material was also analyzed and compared to conventional gray cast iron. In microstructural observation results of Al-15wt.%Si alloy, primary Si phase ($45.3{\mu}m$) and eutectic Si phase ($3.1{\mu}m$) were found in the matrix, and the precipitations of $Mg_2Si({\beta}^{\prime})$, $Al_2Cu({\theta}^{\prime})$ and $Al_6(Mn,Fe)$ were also detected. In the case of gray cast iron, ferrite and pearlite were observed. It was also observed that flake graphite ($20-130{\mu}m$) were randomly distributed. Wear rates were lower in the Al-Si alloy as compared to those of gray cast iron in all load conditions, confirming the outstanding wear resistance of Al-15wt.%Si alloy in engine oil environment. In the $4kg_f$ condition, the wear rate of gray cast iron was $6.0{\times}10^{-5}$ and that of Al-Si measured $0.8{\times}10^{-5}$. The microstructures after wear of the two materials were analyzed using scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). The primary Si and eutectic Si of Al-Si alloy effectively mitigated the abrasive wear, and the Al matrix effectively endured to accept a significant amount of plastic deformation caused by wear.

Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DI Diesel Engine - Using Rape Oil - (직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향 - 유채유를 중심으로 -)

  • Lim, Jae-Keun;Choi, Soon-Youl;Kim, Suk-Joon;Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.83-87
    • /
    • 2008
  • We have a lot of interest in alternative fuels to provide energy independence from oil producing country and to reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel without change of engine structure in diesel engine of compression ignition engine. In this paper, the test results on specific fuel consumption and exhaust emissions of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine. Especially this biodisel was produced from rape oil at our laboratory by ourselves. This study showed that specific fuel consumption and NOx emission were slightly increased, on the other hand CO emission and Soot were tolerably decreased more in the case of biodiesel blends than neat diesel oil.

  • PDF