• Title/Summary/Keyword: Engineered Bacillus subtilis

Search Result 8, Processing Time 0.022 seconds

Construction of Bacillus subtilis strain engineered for expression of porcine β-defensin-2/cecropin P1 fusion antimicrobial peptides and its growth-promoting effect and antimicrobial activity

  • Xu, Jian;Zhong, Fei;Zhang, Yonghong;Zhang, Jianlou;Huo, Shanshan;Lin, Hongyu;Wang, Liyue;Cui, Dan;Li, Xiujin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.576-584
    • /
    • 2017
  • Objective: To generate recombinant Bacillus subtilis (B. subtilis) engineered for expression of porcine ${\beta}-defensin-2$ (pBD-2) and cecropin P1 (CP1) fusion antimicrobial peptide and investigate their anti-bacterial activity in vitro and their growth-promoting and disease resisting activity in vivo. Methods: The pBD-2 and CP1 fused gene was synthesized using the main codons of B. subtilis and inserted into plasmid pMK4 vector to construct their expression vector. The fusion peptide-expressing B. subtilis was constructed by transformation with the vector. The expressed fusion peptide was detected with Western blot. The antimicrobial activity of the expressed fusion peptide and the recovered pBD-2 and CP1 by enterokinase digestion in vitro was analyzed by the bacterial growth-inhibitory activity assay. To analyze the engineered B. subtilis on growth promotion and disease resistance, the weaned piglets were fed with basic diet supplemented with the recombinant B. subtilis. Then the piglets were challenged by enteropathogenic Escherichia coli (E. coli). The weight gain and diarrhea incidence of piglets were measured after challenge. Results: The recombinant B. subtilis engineered for expression of pBD-2/CP1 fusion peptide was successfully constructed using the main codons of the B. subtilis. Both expressed pBD-2/CP1 fusion peptide and their individual peptides recovered from parental fusion peptide by enterokinase digestion possessed the antimicrobial activities to a variety of the bacteria, including gram-negative bacteria (E. coli, Salmonella typhimurium, and Haemophilus parasuis) and grampositive bacteria (Staphylococcus aureus). Supplementing the engineered B. subtilis to the pig feed could significantly promote the piglet growth and reduced diarrhea incidence of the piglets. Conclusion: The generated B. subtilis strain can efficiently express pBD-2/CP1 fusion antimicrobial peptide, the recovered pBD-2 and CP1 peptides possess potent antimicrobial activities to a variety of bacterial species in vitro. Supplementation of the engineered B. subtilis in pig feed obviously promote piglet growth and resistance to the colibacillosis.

Novel sinIR promoter for Bacillus subtilis DB104 recombinant protein expression system

  • Ji-Su Jun;Min-Joo Kim;KwangWon Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.128-137
    • /
    • 2023
  • Transcriptome analysis revealed that the sinR gene encoding a transition-state regulator of Bacillus pumilus, genetically close to B. subtilis, was expressed at high levels during growth. The sinR gene is the second gene of the sinIR operon consisting of three promoters and two structural genes in B. subtilis. This study used the sinIR promoter of B. subtilis DB104 to construct a recombinant protein expression system. First, the expression ability depending on the number of sinIR promoter was investigated using enhanced green fluorescent protein (eGFP). The expression level of eGFP was slightly higher when using two promoters (Psin2) than using original promoters. The Psin2 promoter was further engineered by modifying the repressor binding site and -35 and -10 regions. Shine-Dalgarno (SD) sequence of the sinI gene was modified to the consensus sequence. Finally, combining the engineered Psin2 promoter with the modified SD sequence increased the expression level of eGFP by about 13.4-fold over the original promoter. Our results suggest that the optimized sinIR promoter could be used as a novel tool for recombinant protein expression in B. subtilis.

Overproduction and Secretion of $\beta$-Glucosidase in Bacillus subtilis

  • Kim, Jeong-Hyun;Lee, Baek-Rak;Moo, young-Pack
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.141-145
    • /
    • 1998
  • Overproduction of intracellular ${\beta}$-glucosidase was attempted by modifying the promoter region of a ${\beta}$-glucosidase gene cloned from Cellulomonas fimi and expressing it in Bacillus subtilis DB 104. A strong engineered promoter, BJ27UΔ88, was fused to the ${\beta}$-glucosidase gene after removing its native promoter. An effective Shine-Dalgamo sequence (genel0 of phage T7) was inserted between the promoter and the ${\beta}$-glucosidase structural gene. The modified gene was overexpressed in B. subtilis and produced 1121.5 units of ${\beta}$-glucosidase per mg protein which is about $12\%$ of total intracellular protein. Secretion of overproduced intracellular ${\beta}$-glucosidase was attempted by using the signal sequence of the Bacillus endoglucanase gene as well as an in-frame hybrid protein of endoglucanase. The hybrid protein was normally secreted into the culture medium and still retained ${\beta}$-glucosidase activity.

  • PDF

Biosynthesis of Polymyxins B, E, and P Using Genetically Engineered Polymyxin Synthetases in the Surrogate Host Bacillus subtilis

  • Kim, Se-Yu;Park, Soo-Young;Choi, Soo-Keun;Park, Seung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1015-1025
    • /
    • 2015
  • The development of diverse polymyxin derivatives is needed to solve the toxicity and resistance problems of polymyxins. However, no platform has generated polymyxin derivatives by genetically engineering a polymyxin synthetase, which is a nonribosomal peptide synthetase. In this study, we present a two-step approach for the construction of engineered polymyxin synthetases by substituting the adenylation (A) domains of polymyxin A synthetase, which is encoded by the pmxABCDE gene cluster of Paenibacillus polymyxa E681. First, the seventh L-threonine-specific A-domain region in pmxA was substituted with the L-leucine-specific A-domain region obtained from P. polymyxa ATCC21830 to make polymyxin E synthetase, and then the sixth D-leucine-specific A-domain region (A6-D-Leu-domain) was substituted with the D-phenylalanine-specific A-domain region (A6-D-Phe-domain) obtained from P. polymyxa F4 to make polymyxin B synthetase. This step was performed in Escherichia coli on a pmxA-containing fosmid, using the lambda Red recombination system and the sacB gene as a counter-selectable marker. Next, the modified pmxA gene was fused to pmxBCDE on the chromosome of Bacillus subtilis BSK4dA, and the resulting recombinant strains BSK4-PB and BSK4-PE were confirmed to produce polymyxins B and E, respectively. We also succeeded in constructing the B. subtilis BSK4-PP strain, which produces polymyxin P, by singly substituting the A6-D-Leu-domain with the A6-D-Phe-domain. This is the first report in which polymyxin derivatives were generated by genetically engineering polymyxin synthetases. The two recombinant B. subtilis strains will be useful for improving the commercial production of polymyxins B and E, and they will facilitate the generation of novel polymyxin derivatives.

Combinatorial Methylerythritol Phosphate Pathway Engineering and Process Optimization for Increased Menaquinone-7 Synthesis in Bacillus subtilis

  • Chen, Taichi;Xia, Hongzhi;Cui, Shixiu;Lv, Xueqin;Li, Xueliang;Liu, Yanfeng;Li, Jianghua;Du, Guocheng;Liu, Long
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.762-769
    • /
    • 2020
  • Vitamin K2 (menaquinone) is an essential vitamin existing in the daily diet, and menaquinone-7 (MK-7) is an important form of it. In a recent work, we engineered the synthesis modules of MK-7 in Bacillus subtilis, and the strain BS20 could produce 360 mg/l MK-7 in shake flasks, while the methylerythritol phosphate (MEP) pathway, which provides the precursor isopentenyl diphosphate for MK-7 synthesis, was not engineered. In this study, we overexpressed five genes of the MEP pathway in BS20 and finally obtained a strain (BS20DFHG) with MK-7 titer of 415 mg/l in shake flasks. Next, we optimized the fermentation process parameters (initial pH, temperature and aeration) in an 8-unit parallel bioreactor system consisting of 300-ml glass vessels. Based on this, we scaled up the MK-7 production by the strain BS20DFHG in a 50-l bioreactor, and the highest MK-7 titer reached 242 mg/l. Here, we show that the engineered strain BS20DFHG may be used for the industrial production of MK-7 in the future.

Metabolic Engineering of the Thermophilic Bacteria, Bacillus stearothermophilus, for Ethanol Production

  • Jo, Gwang-Myeong;Ingram, Lonnie O.
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.56-59
    • /
    • 2000
  • Thermophilic bacterium, Bacillus stearothermophilus NUB3621, was engineered to produce ethanol from glucose by introducing cloned thermostable pyruvate decarboxylase and alcohol dehydrogenase genes. A novel promoter sequence was screened and used for the enhancement of these two enzymes. Successful redirection of metabolic flux into ethanol was obtained. In addition, gene expression profiling using Bacillus subtilis DNA microarray was analyzed to overcome the intrinsic low glucose utilization of B.stearothermophilus. Many known and unknown genes were identified to be up or down regulated under glucose-containing media.

  • PDF

Biosynthesis of rare 20(R)-protopanaxadiol/protopanaxatriol type ginsenosides through Escherichia coli engineered with uridine diphosphate glycosyltransferase genes

  • Yu, Lu;Chen, Yuan;Shi, Jie;Wang, Rufeng;Yang, Yingbo;Yang, Li;Zhao, Shujuan;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.116-124
    • /
    • 2019
  • Background: Ginsenosides are known as the principal pharmacological active constituents in Panax medicinal plants such as Asian ginseng, American ginseng, and Notoginseng. Some ginsenosides, especially the 20(R) isomers, are found in trace amounts in natural sources and are difficult to chemically synthesize. The present study provides an approach to produce such trace ginsenosides applying biotransformation through Escherichia coli modified with relevant genes. Methods: Seven uridine diphosphate glycosyltransferase (UGT) genes originating from Panax notoginseng, Medicago sativa, and Bacillus subtilis were synthesized or cloned and constructed into pETM6, an ePathBrick vector, which were then introduced into E. coli BL21star (DE3) separately. 20(R)-Protopanaxadiol (PPD), 20(R)-protopanaxatriol (PPT), and 20(R)-type ginsenosides were used as substrates for biotransformation with recombinant E. coli modified with those UGT genes. Results: E. coli engineered with $GT95^{syn}$ selectively transfers a glucose moiety to the C20 hydroxyl of 20(R)-PPD and 20(R)-PPT to produce 20(R)-CK and 20(R)-F1, respectively. GTK1- and GTC1-modified E. coli glycosylated the C3-OH of 20(R)-PPD to form 20(R)-Rh2. Moreover, E. coli containing $p2GT95^{syn}K1$, a recreated two-step glycosylation pathway via the ePathBrich, implemented the successive glycosylation at C20-OH and C3-OH of 20(R)-PPD and yielded 20(R)-F2 in the biotransformation broth. Conclusion: This study demonstrates that rare 20(R)-ginsenosides can be produced through E. coli engineered with UTG genes.

Transformation is Mechanism of Gene Transfer in Soil (토양에서 Transformation에 의한 유전자 전이)

  • ;Stotzky, G.
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.210-218
    • /
    • 1990
  • The survival and transfer of chromosomal genes coding for the synthesis of amino acids (threonine, tryptophan, histidine, leucine, methionine) and of plasmid-borne genes coding for resistance to antibiotics (chloramphenicol, kanamycin, erythromycin) by transformation in sterile and nonsterile soil (the soil was amended to 12% vol/vol with the clay mineral, montmorillonite) was studied. In pure culture, the numbers of vegetative cells of the Bacillus subtilis strains decreased by 1 to 1.5 orders of magnitude within one week, but spores of each strain showed lesser decreases. In sterile soil, the populations of vegetative cells and spores decreased by 1.5 to 3 orders of magnitude within 2 to 4 days and then showed little additional decreased. The transformation frequencies (number of transformants/numbers of donors and recipients) of individual amino acid-genes invitro ranged from $1.3{\pm}0.6{\times}10^{-6}$ to $6.0{\pm}2.36{\times}10^{-6}$, of two amino acid-genes from $8.5{\pm}0.7{\times}10^{-8}$ to $3.1{\pm}0.6{\times}10^{-7}$, and of the antibiotic-resistance genes from $1.5{\pm} 0.2{\itmes} 10^{-7}$ to $1.4{\pm} 0.4{\times} 10^{-5}$ . In sterile soil, the frequencies of transfer of individual amino acid-genes ranged from $2.0{\times} 10^{-7}$ to $2.0{\times} 10^{-5}$ and of the antibiotic-resistance genes from $2.0{\times} 10^{-7}$ to $9.4{\pm} 4.7{\times} 10^{-6}$. The transfer of two amino acid-genes in sterile soil was detected at a frequency of $2.0{\times} 10^{-6}$ to $4.5{\times} 10^{-6}$, but only in three instances. The transformation frequencies of antibiotic-resistance genes in nonsterile soil were essentially similar to those in sterile soil. However, to detect transformants in nonsterile soil, higher concentrations of antibiotics were needed, as the result of the large numbers of indigenous soil bacteria resistant to the concentration of antibiotics used in the sterile soil and in vitro studies. The results of these studies show that genes can be transferred by transformation in soil and that this mechanism of transfer must be considered in risk assessment of the release of genetically engineered microorganisms to the environment.

  • PDF