• Title/Summary/Keyword: Enrofloxacin

Search Result 139, Processing Time 0.025 seconds

Preparation and Characterization of Enrofloxacin/Carbopol Complex in Aqueous Solution

  • Chun, Myung-Kwan;Choi, Hoo-Kyun
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.670-675
    • /
    • 2004
  • Since the bitter taste of enrofloxacin apparently limit the patient compliance in the oral formulations of the antibacterial agent, the masking of the taste is essential for the improvement of the therapeutic effectiveness. Therefore, this study was carried out to examine the feasibility of taste masking of enrofloxacin by the retardation of its dissolution rate using the formation of complex between the drug and Carbopol. The complexation between Carbopol and enrofloxacin was confirmed by turbidity, UV spectrophotometry, wide angle X-ray diffraction, and differential scanning calorimetry. The enrofloxacin content in the complexes was 34% (Carbo-enrofloxacin complex I) and 57% (Carbo-enrofloxacin complex II) depending on the prepara-tion method. The dissolution rate of enrofloxacin from the complex increased as the pH was reduced. The dissolution rate of enrofloxacin from the Carbo-enrofloxacin complex I was significantly lower than that of the enrofloxacin powder. Therefore, these observations suggest that Carbo-enrofloxacin complex I can be used to mask the taste of enrofloxacin.

Modulatory action of enrofloxacin in lipopolysaccharide-induced hyper-activated mouse spleen cells (Lipopolysaccharide에 의해 과활성화된 마우스 비장세포에서 Enrofloxacin의 조절작용)

  • Ko, Hyeong-Ju;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.2
    • /
    • pp.75-80
    • /
    • 2019
  • Enrofloxacin, a fluoroquinolone, is a broad-spectrum antibiotic widely used in veterinary medicine that inhibits the action of bacterial DNA gyrase, resulting in anti-bacterial effects. This study was performed to examine whether enrofloxacin has modulatory and anti-inflammatory activity on immune cells. A few studies have reported the anti-inflammatory effects of enrofloxacin. In this study, we used mouse spleen cells treated with lipopolysaccharide (LPS) and examined the effects of enrofloxacin. Several assays were performed in LPS-treated spleen cells after the enrofloxacin treatment. Enrofloxacin inhibited the metabolic activity and mitochondrial membrane potential of LPS-treated spleen cells significantly. On the other hand, enrofloxacin did not alter the proportion of the subsets in spleen cells, and did not induce cell death. The production of tumor necrosis factor-alpha in LPS-treated spleen cells was inhibited by enrofloxacin. Overall, enrofloxacin had modulatory activity in spleen cells treated with LPS. These data may broaden the use of enrofloxacin as an antibiotic with anti-inflammatory activity in veterinary clinics.

Histopathological Observations on the Renal Injury in Rats Administered with Enrofloxacin and Oxalate (Oxalate와 Enrofloxacin 투여한 랫트신장에 대한 병리조직학적관찰)

  • 오원석;이차수;오규실;정원일;정재용;정다히;정규식
    • Journal of Veterinary Clinics
    • /
    • v.20 no.4
    • /
    • pp.449-457
    • /
    • 2003
  • To investigate the renal effects of enrofloxacin administration on rats induced with dehydration or hyperoxaluria, male rats were treated with enrofloxacin of 50 mg to 500 mg/kg b.w.. The microscopical observations of kidney and urine sediment were carried out in the experimental groups. The result obtained were as follows; The male rats deprived of water for 72 hours and administered with enrofloxacin. As enrofloxacin administration dose was increased, clinical signs such as loss of appetite, depression, weakness, and loss of urine output became more severe. In the histopathological findings, there were hyperemia and hemorrhage in renal cortex, vacuolation and necrosis of renal tubular epithelia, proteinous casts within renal tubules. The male rats were orally administered with sodium oxalate and injected with enrofloxacin for 7days. As enrofloxacin administration dose was increased, clinical signs such as the loss of appetite and water consumption, and weakness became more severe. In the histopathological findings, there are hemorrhage of glomeruli and cortical hyperemia, vacuolation and necrosis of tubular epithelia, proteinous casts in renal tubules. In the microscopical findings of urine sediment, there are calcium oxalate crystal (diamond-like type) and magnesium ammonium phosphate crystals (rhomboid). The male rats were intraperitoneally injected with sodium oxalate and administered with enrofloxacin for 7days. As enrofloxacin administration dose was increased, clinical signs such as the loss of appetite and water consumption, weakness were more severe. In the histopathological findings, there were hyperemia and hemorrhage in both glomeruli and renal cortex. Severe necrosis of renal tubular epithelia, bluish materials within renal tubules were also found. In the microscopical findings of urine sediment, there were many calcium oxalate crystals. The present results suggest that enrofloxacin has some injurious effects in rats having dehydration or hyperoxaluria, and clinically, we should consider these renal injury effects when we use enrofloxacin in patients accompanied renal disease, dehydration and hyperoxaluria conditions.

Antibacterial activity of enrofloxacin loaded gelatin-sodium alginate composite nanogels against intracellular Staphylococcus aureus small colony variants

  • Luo, Wanhe;Liu, Jinhuan;Algharib, Samah Attia;Chen, Wei
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.48.1-48.12
    • /
    • 2022
  • Background: The poor intracellular concentration of enrofloxacin might lead to treatment failure of cow mastitis caused by Staphylococcus aureus small colony variants (SASCVs). Objectives: In this study, enrofloxacin composite nanogels were developed to increase the intracellular therapeutic drug concentrations and enhance the efficacy of enrofloxacin against cow mastitis caused by intracellular SASCVs. Methods: Enrofloxacin composite nanogels were formulated by an electrostatic interaction between gelatin (positive charge) and sodium alginate (SA; negative charge) with the help of CaCl2 (ionic crosslinkers) and optimized by a single factor test using the particle diameter, zeta potential (ZP), polydispersity index (PDI), loading capacity (LC), and encapsulation efficiency (EE) as indexes. The formation mechanism, structural characteristics, bioadhesion ability, cellular uptake, and the antibacterial activity of the enrofloxacin composite nanogels against intracellular SASCVs strain were studied systematically. Results: The optimized formulation was comprised of 10 mg/mL (gelatin), 5 mg/mL (SA), and 0.25 mg/mL (CaCl2). The size, LC, EE, PDI, and ZP of the optimized enrofloxacin composite nanogels were 323.2 ± 4.3 nm, 15.4% ± 0.2%, 69.6% ± 1.3%, 0.11 ± 0.02, and -34.4 ± 0.8 mV, respectively. Transmission electron microscopy showed that the enrofloxacin composite nanogels were spherical with a smooth surface and good particle size distributions. In addition, the enrofloxacin composite nanogels could enhance the bioadhesion capacity of enrofloxacin for the SASCVs strain by adhesive studies. The minimum inhibitory concentration, minimum bactericidal concentration, minimum biofilm inhibitory concentration, and minimum biofilm eradication concentration were 2, 4, 4, and 8 ㎍/mL, respectively. The killing rate curve had a concentration-dependent bactericidal effect as increasing drug concentrations induced swifter and more radical killing effects. Conclusions: This study provides a good tendency for developing enrofloxacin composite nanogels for treating cow mastitis caused by intracellular SASCVs and other intracellular bacterial infections.

Bioavailability and Comparative Pharmacokinetics of Two Enrofloxacin Formulations in Broiler Chickens (육계에서 경구투여시 enrofloxacin 제제에 따른 생체이용율 및 약물동태)

  • 윤효인;박승춘
    • Journal of Veterinary Clinics
    • /
    • v.14 no.2
    • /
    • pp.195-200
    • /
    • 1997
  • In order to compare the pharmacokinetic profiles of enrofloxacin-HCL)ENFLX-HCL) and enrofloxacin-KOH (ENFLX-KOH) after oral administration in broiler chickens, the study was performed. The chickens used in this study weighed $1.82 {\pm}0.2 kg$ and clinically healthy. The dose of intravenous and lral administration was 5 mg per kg of body weight as enrofloxacin. After intravenous injection of enrofloxacin, it showed two-compartment model with the rapid distribution phase and the slow elimination phase. The mean apparent volume of distribution (Vd) was 2.70 l/kg. The mean half-life of elimination and distribution showed 8.26 h and 0.44 h, respectively. The mean area under curve (AUC) was calculated as $19.7 {\mu} g{\cdot} h/ml$. After oral administration of ENFLX-HCL and ENFLX-KOH with a rate of dose 5 mg of enrofloxacin/kg of body weight, Both of the products were showed one-compartment model unlike that of i.v. enrofloxacin standard solution showed the mean bioavailability of 79.64% for the ENFLX-KOG and 86.24% for the ENFLX-HCL. The mean total body clearance of the former was 0.24 l/kg/h and the latter 0.42 l/kg/h. Both enorfloxacin formulations seemed to have good tissue distribution and penetration as indicated by large volume of distribution : 2.72 l/kg for the -KOH and 4.44 l/kg for the -HCL. With the results obtained in this study, ENFLX-HCL could be used in place of its salt form in chickens.

  • PDF

Matrix solid phase dispersion(MSPD) extraction and HPLC determination of enrofloxacin and ciprofloxacin in pork muscle tissue (시료고체상분산(matrix solid phase dispersion)전처리법과 액체크로마토그라피를 이용한 돈육중 enrofloxacin 및 ciprofloxacin 분석)

  • Kang, Hwan-goo;Son, Seong-wan;Lee, Hye-sook;Kim, Jae-hak;Cho, Myung-haing
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.1
    • /
    • pp.195-202
    • /
    • 1997
  • A method for the isolation by matrix solid phase dispersion method and liquid chromatographic determination of enrofloxacin and ciprofloxacin in pork muscle tissue is presented. Blank or enrofloxacin and ciprofloxacin spiked samples(0.5g) containing 0.05g oxalic acid were blended with $C_{18}$(octadecylsilyl derivatized silica) packing material. After homogenization, $C_{18}$/muscle tissue matrix was transferred to glass column made from 10ml glass syringe and filter paper, and compressed to 4~4.5ml volume. A column was washed with 8ml of hexane and dried under vacuum. Interfering materials were removed by ethylacetate 8ml and dried, following which enrofloxacin and ciprofloxacin were eluted with 8ml of methanal under gravity. The eluate containing enrofloxacin and ciprofloxacin wase free from interfering compound when analysed by HPLC with UV detection at 278nm. Enrofloxacin and ciprofloxacin showed linear response with UV detector at the range of $0.05{\sim}1.0{\mu}g/ml$ and eluted within 5ml elution volume of methanol from the matrix. Fortified sample containing 0.05g oxalic acid represented more good recoveries than that of control sample. Average percentages of enrofloxacin and ciprofloxacin were $93.30{\pm}4.56%$ and $91.84{\pm}4.17%$, respectively, for the concentration range(0.05, 0.1, 0.25, 0.5 and $0.75{\mu}g/g$). The interassay variability of enrofloxacin was $6.02{\pm}5.33%$ with an intra-assay variability of 4.89% and $6.75{\pm}2.68%$ with 4.54% for ciprofloxacin. Detection limit of enrofloxacin and ciprofloxacin was $0.030{\mu}g/g$ in the spiked sample.

  • PDF

Serum bactericidal activity and disposition kinetics of enrofloxacin in Korean native goats (한국재래산양에서 Enrofloxacin의 혈청내 항균효과와 체내동태)

  • Yun, Hyo-in;Kim, Moo-youl;Park, Seung-chun
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.2
    • /
    • pp.321-330
    • /
    • 1997
  • Enrofloxacin is one of the second-generation quinolones which have been widely used to treat bacterial infections in various species including chicken, pig, horse and cattle. The objective of the present study was to describe the serum bactericidal activity(SBA) of enrofloxacin, its pharmacokinetic behaviors after intramuscular or intravenous administration to Korean native goats in the dose rate of 5mg/kg b.w. The results obtained through this study were as follows : 1. Sera collected from both sexes of Korean native goats administered 5mg/kg i.v. or i.m. showed potent antibacterial activities up to the 12 hours by way of the serum bactericidal activity. 2. Concentrations of enrofloxacin in the biological samples were measured by high-performance liquid chromatography(HPLC) so as to study pharmacokinetic characteristics. For detection of enrofloxacin, 10% TCA was optimal for protein precipitation and the mobile phase was 0.01M citric acid/methanol/acetonitrile(7/2/1, pH 3.5) with solid phase being the $C_{18}$ reversephase column and detection wavelength being 278nm. The limit of detection of enrofloxacin on HPLC was $0.05{\mu}g/ml$. 3. Pharmacokinetic profile of enrofloxacin administered 5mg/kg i.v. in Korean native goats was best described by two-compartment open model and that administered i.m. the same rate by one-compartment model. There were no sex differences in pharmacokineticl parameters. In conclusion, enrofloxacin showed potent in vivo antibacterial activity and excellent pharmacokinetic properties in Korean native goats, hence it may be used as a potential antibacterial in the veterinary clinical settings.

  • PDF

Molecularly Imprinted Solid-Phase Extraction for Determination of Enrofloxacin and Ciprofloxacin in Chicken Muscle

  • Yan, Hong-Yuan;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1173-1178
    • /
    • 2008
  • A simple and sensitive high-performance liquid chromatographic method was developed for the simultaneous identification of enrofloxacin and its active metabolite ciprofloxacin in chicken muscle. Norflorxacin imprinted polymers synthesized in water-containing systems show high selectivity to enrofloxacin and ciprofloxacin in an aqueous environment. Using these water-compatible imprinted polymers as selective adsorbents in the solid-phase extraction of enrofloxacin and ciprofloxacin from chicken samples, the remaining biological matrix could be quickly washed out from the imprinted column while enrofloxacin and ciprofloxacin were selectively retained and enriched. Analytical separation was performed on a $C_{18}$ column using acetonitrile-water as a mobile phase and fluorescence detection. Good linearity was obtained from 0.8 to 500 ng/g (r > 0.998) with relative standard deviation of less than 3.9%. The mean recoveries of enrofloxacin and ciprofloxacin from chicken muscle were 80.6-94.5% and 77.8-91.8% at three different concentrations. The limits of determinations based on S/N=3 were 0.07 ng/g and 0.09 ng/g, which are below the maximum residue limits established in many countries.

Killing Rate Curve and Antivacterial Activity against Various Pathogenic Bacteria in the Presence of Enrofloxacin and Colistin (병원성미생물에 대한 Enrofloxacin과 Colistin의 배합비육에 따른 항균작용과 균의 사멸속도)

  • 윤효인;김민규;박승춘
    • Journal of Veterinary Clinics
    • /
    • v.14 no.2
    • /
    • pp.215-222
    • /
    • 1997
  • Enrofloxacin-colistin combination, widely used in Gram negative infections in veterinary sector, was investigated in terms of MIC and initial killing rate using E coli k 88ab, Salmonella typhimurium, Pasteurella multocida type A, Bordetella bronchiseptica and Staphylococcus aureus as test organisms. On the basis of MICs of enrofloxacin-colistin combination against the above bacteria, killing rates of the combination of enrofloxacin and colistin at the ratio of 5:0, 4:1, 3:2, 1:1, 2:3, 1:4 and 0:5, indicated high and rapid antibacterial acitivities against all but Staphylococcus aureus R-209, with the number of bacteria reducing to less than one percent within two hours. At the MIC of enrofloxacin or colistin, both antibacterials showed the highest killing rates during 2-4 hours against Gram negatives such as E coli K88ab,Pasteurella multocida type A and Bodetella bronchiseptica but allowed the regrowth of the same pathogens thereafter. On the while, the combination of two antibacterials at a fourth MIC resulted in high killing rate without bacterial regrowth during 24 hours, suggesting the synergistic antivacterial effects. The combination, however, did not show favourable activity against Gram negatime S typhimurium and Gram positive S aureus ergistic antibacterial activity against Gram negatime pathogens but also colistin showed LPS-neutraization, we could suggest the combination should provide clinically positive therapeutic armarium in Gram negative infections.

  • PDF

Production and Characterization of a Monoclonal Antibody Against Enrofloxacin

  • Chusri, Manaspong;Wongphanit, Pitikarn;Palaga, Tanapat;Puthong, Songchan;Sooksai, Sarintip;Komolpis, Kittinan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.69-75
    • /
    • 2013
  • Enrofloxacin is a fluoroquinolone antibiotic approved for the treatment of infections in animals. Because of the side effects to consumers of animal products, the maximum residue limits (MRLs) of enrofloxacin in animal tissues for consumption are regulated. In this study, a monoclonal antibody (mAb) against enrofloxacin was prepared and characterized for the development of a direct competitive enzyme-linked immunosorbent assay (ELISA). The obtained mAb, Enro44, was highly specific for enrofloxacin and had a 50% inhibition concentration ($IC_{50}$) of 1.99 ng/ml in a competitive ELISA, and the limit of detection (LOD) was 0.50 ng/ml. The cross-reactivity of the mAb with other quinolones and fluoroquinolones was lower than 0.01%. The subclass of the mAb Enro44 was identified as IgG1. The antigen (Ag)-captured direct competitive ELISA using the mAb Enro44 was tested on different spiked samples, including chicken muscle, cattle milk, and cattle urine, and the assay demonstrated recoveries of 82-112%, 80-125%, and 78-124%, respectively. Furthermore, the quantitation of enrofloxacin obtained from the ELISA and from high-performance liquid chromatography (HPLC) was in good agreement, with the linear regression coefficient between 0.933 and 1.056. The cDNAs encoding a heavy-chain Fd fragment (VH and CH1) and a light chain of the mAb Enro44 were cloned and sequenced. Taken together, the results obtained reveal a potential use of this mAb in an ELISA for the detection of enrofloxacin in food samples. The information of amino acid sequence of this mAb will be useful for further modification and production of the mAb in a bioreactor.