• Title/Summary/Keyword: Enthalpy exchanger

Search Result 56, Processing Time 0.023 seconds

Performance of a Plate-Type Enthalpy Exchanger Made of Papers Having Different Properties (종이 물성에 따른 판형 전열교환기의 성능)

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Song, Gil-Sup;Kim, Dong-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.547-555
    • /
    • 2008
  • The effects of paper properties such as density, air permeability, water vapor transmission rate on the thermal performance of plate-type enthalpy exchanger were experimentally investigated. Papers having different properties were made from the same pulp by calendering or refining. Enthalpy exchanger samples were made from the papers, and were tested according to the standard test procedure (KS B 6879). Effective efficiencies were obtained, which accounted for the air leakage between supply and exhaust streams. Results showed that paper density affected the sensible heat transfer of the samples. Sensible heat transfer increased with density of the paper. It was also shown that effective efficiency of latent heat transfer was approximately the same independent of the samples, which suggests that papers made of the same pulp show similar water vapor transmission characteristics independent of the degree of calendering or refining. Best performance was obtained for the sample having highest paper density and moderate water vapor transmission ratio.

Effect of Paper Properties on the Performance of a Enthalpy Exchanger (종이 물성이 전열교환 엘리먼트 성능에 미치는 영향)

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Song, Gil-Sup;Kim, Dong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.414-418
    • /
    • 2008
  • The effects of paper properties such as density, air permeability, water vapor transmission rate on the thermal performance of plate-type enthalpy exchanger were experimentally investigated. Three enthalpy exchanger samples having different properties were made, and were tested according to the standard test procedure (KS B 6879). Effective efficiencies were defined, which accounted for the air leakage between supply and exhaust streams. Results showed that paper density affected the sensible heat transfer of the samples. Sensible heat transfer increased with density of the paper. It was also shown that water vapor transmission rate alone was not a proper indicator for the efficiency of latent heat transfer. Air permeability should also be considered for adequate evaluation of the latent heat transfer. Best performance was obtained for the sample having highest paper density and moderate water vapor transmission ratio.

  • PDF

A Experimental Study of Horizontal Geothermal Heat Exchanger System about Total Enthalpy Change (수평형 지중열교환기의 전열량 변화에 대한 실험적 연구)

  • Cho, SungWoo;Ihm, PyeongChan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • This paper is performed to investigate of cooling effect and total enthalpy variation on EAHES(Earth-to-Air Heat Exchanger System) that is buried 3m depth and 60m length. Using EAHES, the reduction of the sensible heat is obviously but latent heat is showed increased trend. Although the outdoor average latent heat accounts for 53.2% of total enthalpy, latent heat of the exit air from EAHES was raised as 58%. For improving cooling effect of EAHES, it has to considered that how to remove the latent heat from EAHES.

Heat Transfer Performance of the Duct with Various Cross Section in Heat Exchanger (단면형상 변화에 따른 전열교환기 열전달 특성변화에 대한 연구)

  • Kim, Eung-Bok;Han, Min-Sub;Kim, Nae-Hyun;Won, Tae-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.322-327
    • /
    • 2010
  • It is a critical task to keep the ventilation system working in a proper and efficient manner in large multi-storey buildings, and the enthalpy exchanger is becoming an increasingly important part of the ventilation system by playing the function of channeling heat and moisture. We present a computational study on the heat transfer performance of the cross-flow enthalpy exchanger, which is in large use for residential buildings. The ducts are considered whose cross-sectional shapes resemble triangle and longitudinal centerline a cosine wave. It is shown that, as the cross-sectional shape departs from triangle, the heat transfer performance of the duct tends to deteriorate. Also, applying the wave-like shape to the longitudinal centerline of the duct increases the rate of heat transfer and the applied pressure-gradient at the same time. The origin of the performance variations in the cases considered are quantitatively analyzed and discussed.

Thermal Performance of an Enthalpy Exchanger Made of Paper at Different Outdoor Temperatures and Humidities (외기 온·습도 변화에 따른 종이재질 전열교환 엘리먼트 성능에 관한 연구)

  • Kim, Nae-Hyun;Lee, Eul-Jong;Song, Kil-Sup;Oh, Wang-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.697-702
    • /
    • 2010
  • An enthalpy exchanger in which heat and moisture transfer occur between the indoor and outdoor air operates at various outdoor conditions. In this study, the effect of the outdoor-air temperature and humidity on the performance of an enthalpy exchanger was experimentally investigated. An apparatus was specially-made to accurately measure the incoming and outgoing dry- and wet-bulb air temperatures as well as the flow rates. Tests were conducted in constant-temperature and constant-humidity chambers at different outdoor temperatures and humidities. It is shown that the effectiveness of latent-heat exchange increases as the relative humidity increases; further, this effect exhibited minimal dependence on the absolute humidity. However, the effectiveness of sensible-heat exchange is independent of both temperature and humidity

A Study on the Characteristics of Total Heat Exchanger under Various Conditions (운전조건에 따른 전열교환기의 성능특성 연구)

  • Bail Cheol-Ho;Lim Young-Heon;Gulnora Diuraeva;Park Ji-Yeol;Kwak Kyung-Min;Chu Euy-Sung;Kim Young-Saeng;Kim Jee-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.891-897
    • /
    • 2005
  • The characteristics of energy Performance for total heat exchanger have been investigated under various conditions. In cooling operation the latent and enthalpy efficiency are affected by the difference of absolute humidity ratio between indoor and outdoor air. In addition to this the characteristics of absorbing material in the element affects the energy performance. Low dry bulb temperature of indoor air or high absolute humidity ratio in outdoor air give high latent and enthalpy efficiency even with the same temperature difference of dry bulb temperate between indoor and outdoor air.

A Performance Evaluation of Plate Type Enthalpy Exchanger through CFD Analysis of Elements (열 교환 소자 형상의 CFD 시뮬레이션을 통한 판형 전열 교환기 성능평가)

  • Kang, In-Sung;Ahn, Tae-Kyung;Park, Jin-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In order to better save energy, many buildings have been constructed with high levels of insulation and airtightness in recent years. Additionally, having high quality indoor air has become more relevant, necessitating a ventilating system. This study is aimed at evaluating the performance of a humidity exchanger through computational fluid dynamics (CFD) analysis of elements for the purpose of providing comfortable indoor air and reduced energy consumption. The simulation was conducted with three different shapes (triangle, rectangular, and curve) of heat exchanger elements, in order to find the most effective element. A follow-up simulation then proved the efficiency of the chosen humidity exchanger, which was selected by analyzing the results of the preceding simulation, comparing study data with measurement data from the Korea Testing Laboratory (KTL). The resulting analysis revealed that the rectangular element showed the lowest level of efficiency in both heating and cooling, while the curved element showed the highest level of efficiency in both heating and cooling.

A Study on the Performance of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능에 관한 연구)

  • Yoo, Seong-Yeon;Chung, Min-Ho;Choi, Jae-Ho;Kwon, Hwa-Kil;Lee, Chun-Woo;Lee, Ki-Seong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.245-250
    • /
    • 2003
  • In order to control indoor air quality and save energy, it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. The purpose of this research is to find the performance of paper heat exchanger for exhaust heat recovery, which exchanges latent heat as well as sensible heat. Experimental apparatus comprises heat exchanger model, constant temperature and humidity chamber, fan and measurement systems for temperature, pressure and flow rate. Thermal performance and pressure loss of the paper heat exchanger are measured and compared at various air velocities and outdoor conditions. Experimental results show that paper heat exchanger can recover $50{\sim}70%$ of the enthalpy difference between supply and exhaust air.

  • PDF

A Study on the Performance Prediction of Paper Heat Exchanger for Exhaust Heat Recovery (배기열 회수용 종이 열교환기의 성능예측에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Jin-Hyuck
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.294-299
    • /
    • 2005
  • In order to control indoor air quality and save energy. it is needed to install a suitable ventilation system equipped with heat exchanger for heat recovery. Paper heat exchanger can recover $50{\sim}70$ of the enthalpy difference between supply and exhaust air. The purpose of this research is to obtain the experimental correlations for the friction factor, heat transfer coefficient, mass transfer coefficient and permeance of paper heat exchanger, which can be used for the performance prediction of the paper heat exchanger. Pressure drop at various velocities and heat transfer rate at various dry-bulb temperatures, relative humidities, and specific humidities are measured to make experimental correlations. The results of prediction using correlations show fairly good agreement with experimental data.

  • PDF

Effects of Individual Components on the System Performance in a Desiccant Cooling System (제습냉방시스템에서 요소성능이 시스템성능에 미치는 영향)

  • Chang, Young-Soo;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.687-694
    • /
    • 2007
  • Cycle simulation is peformed for two types of the desiccant cooling system incorporating a regenerative evaporative cooler. The cooling capacity and COP are evaluated at various effectiveness values of the regenerative evaporative cooler, the desiccant rotor and the sensible heat exchanger. As either of the effectiveness of the regenerative evaporative cooler or the humidity effectiveness of the desiccant rotor increases, both the cooling capacity and COP increase, but the enthalpy leak ratio gives the opposite effect on the system performance. It is found that COP of cycle A mainly depends on the humidity effectiveness of the desiccant rotor, while for cycle B enthalpy leak ratio of desiccant rotor has the major impact on COP. The effect of the sensible heat exchanger on the cooling capacity is small about 1/10 compared with those of other components.