• Title/Summary/Keyword: Environmental hazardous detection

Search Result 56, Processing Time 0.031 seconds

Monitoring of Hazardous Chemicals for Effluents of STPs and WWTP in the Nakdong River Basin (낙동강수계 주요 하·폐수처리장 방류수내 미량유해물질 모니터링)

  • Kim, Gyung-A;Seo, Chang-Dong;Lee, Sang-Won;Ryu, Dong-Choon;Kwon, Ki-Won
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1253-1268
    • /
    • 2014
  • This study was investigated twenty two hazardous chemicals compounds for effluents of nine sewage treatment plants (STPs) and one waste water treatment plant (WWTP) in the Nakdong Ri-ver Basin. They are eleven phthalates(DMP, DEP, DIBP, DBP, BEEP, DNPP, DHP, DCP, DEHP, DNOP, Dinonyl phthalate, seven aliphatic hydrocarbons(n-Tridecane, n-Tetradecane, n-Pentadecan-e, n-Hexadecane, n-Heptadecane, n-Octadecane, n-Nonadecane, Isoquinoline, 2-Chloropyridine, 2-N-itrophenol, and Benzophenone. The twenty two compounds were analyzed by gas chromatograp-hy mass spectrometry (GC/MS) with liquid-liquid extraction (LLE). Twenteen of twenty two subs-tances were detected. They were DMP, DEP, DIBP, DBP, DEHP, n-Tetradecane, n-Pentadecane, n-Heptadecane, n-Octadecane, n-Nonadecane, Isoquinoline and Benzophenone. Among these, DEHP, DEP and Benzophenone were most frequently observed. They were obtained as $ND{\sim}36.881{\mu}g/L$, $ND{\sim}0.950{\mu}g/L$, $ND{\sim}2.019{\mu}g/L$, respectively. When the substances were calculated the average concentration at 10 points, the maximum average detection concentration was investigated at the Dalseocheon STP.

Study on Improvement in Reliability of Analysis for VOCs and Aldehydes (대기 중 휘발성유기화합물질 및 알데하이드의 분석 신뢰도 향상에 관한 고찰)

  • Lee M.D.;Lee S.U.;Lim Y.J.;Kim Y.M.;Kim S.Y.;Moon K.J.;Han J.S.;Chung I.R.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.468-476
    • /
    • 2006
  • Hazardous air pollutants (HAPs) have high toxicity and bioaccurnulation potentials into human body even inbsmall amount (levels of ng/$m^3$). As the levels of HAPs might be controversial, it has been become essential to establish the analysis method for correct results. In this study, various analysis methods of VOCs and Aldehydes were compared in order to select the proper methods in our condition. Sampling and analysis method of VOCs were followed to EPA TO-14a and TO-17. VOCs were collected in absorption tube and separated by thermal desorption unit then analyzed by GC/MSD. Aldehydes were sampled in DNPH-cartridge and extracted into solution then analyzed by HPLC as the same condition of EPA TO-13a. This study also shows the results of QA/QC system of selected methods. Some experiments could be improving the data assurance blank test, calibration check, repetition precision check, the determination of detection limit and reproducibility of the retention time. Precisions of VOCs and aldehydes were ranged in 2$\sim$9% and 1$\sim$4% RSD, respectively. Recovery rate of VOCs showed variable ranges from 60 to 133.5%. MDL of VOCs and aldehydes were 0.044$\sim$0.284 ppb and 0.14$\sim$1.02 ng, respectively.

Collision Hazards Detection for Construction Workers Safety Using Equipment Sound Data

  • Elelu, Kehinde;Le, Tuyen;Le, Chau
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.736-743
    • /
    • 2022
  • Construction workers experience a high rate of fatal incidents from mobile equipment in the industry. One of the major causes is the decline in the acoustic condition of workers due to the constant exposure to construction noise. Previous studies have proposed various ways in which audio sensing and machine learning techniques can be used to track equipment's movement on the construction site but not on the audibility of safety signals. This study develops a novel framework to help automate safety surveillance in the construction site. This is done by detecting the audio sound at a different signal-to-noise ratio of -10db, -5db, 0db, 5db, and 10db to notify the worker of imminent dangers of mobile equipment. The scope of this study is focused on developing a signal processing model to help improve the audible sense of mobile equipment for workers. This study includes three-phase: (a) collect audio data of construction equipment, (b) develop a novel audio-based machine learning model for automated detection of collision hazards to be integrated into intelligent hearing protection devices, and (c) conduct field experiments to investigate the system' efficiency and latency. The outcomes showed that the proposed model detects equipment correctly and can timely notify the workers of hazardous situations.

  • PDF

A Research on Development of Eco-friendly Polyurethane Waterproofing Membrane Coating of Exposed Type (재활용 소재를 활용한 친환경 노출형 폴리우레탄 도막방수재 개발에 관한 연구)

  • Kim, Dong-Bum;Heo, Neung-Hoe;Oh, Je-Gon;Go, Gun-Woong;Go, Jang-Ryeol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.161-162
    • /
    • 2014
  • The subject of this study, Eco-friendly Polyurethane Waterproofing Membrane Coating of Exposed Type is manufactured by replacing environmental hazardous substance such as Toluene, Dioctyl Phthalate with Dimethyl Carbonate, waste-soybean oil. As part of existing filler is also replaced with waste-rubber chip and waste-soybean oil. As a result of environment friendly tests, in test of detection of VOCs case was contented with the Ministry of Environment standards at 5% below. Testing methods for heavy metal extracted was contented with standards for official wastes test method. So it is judged that environment friendly is secured.

  • PDF

Microplastics in foods: the hazardous characteristics and risk on human health (식품 환경 오염 미세플라스틱의 인체 영향과 위해평가 동향)

  • Kang, Mi Seon;Kim, Hyun Jung
    • Food Science and Industry
    • /
    • v.54 no.1
    • /
    • pp.2-10
    • /
    • 2021
  • Microplastics with a size of less than 5 mm have emerged as an important environmental and food safety issue, as they have been detected not only in marine but also in terrestrial ecosystem and drinking water. Although many studies have been conducted on the exposure of microplastics and the effects on human health, the lack of standardized experimental methods for microplastics has been reviewed as a major problem. In order to overcome this, European countries such as the Netherlands and Germany are conducting a project to develop detection methods for microplastics as well as to establish the risk assessment methodologies for microplastics. Being the microplastics suggested to have a substantially potential risk on human health, reliable risk assessments should be conducted considering the various sources of microplastics, chemical pollutants and biological factors. In addition, international standards and regulations should be applied.

Distribution of Airborne Hexavalent Chromium Concentrations in Large Industrial Complexes in Korea

  • Kang, Byung-Wook;Lee, Hak-Sung;Kim, Jong-Ho;Hong, Ji-Hyung;Kim, Rok-Ho;Seo, Young-Kyo;Han, Jin-Seok;Baek, Kyung-Min;Kim, Min-Ji;Baek, Sung-Ok
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.208-216
    • /
    • 2016
  • This paper reports the results of a field evaluation which used sampling and analytical methods to determine the levels of airborne hexavalent chromium Cr(VI) in major industrial complexes in Korea over a seven year period (2007-2013). Cr(VI) concentrations were determined using cellulose filter sampling and ion chromatography analysis. In order to validate the analytical performance of these methods, studies were also carried out to investigate data quality control (QC) parameters, such as the method detection limit (MDL), repeatability, and recovery efficiencies. The average concentrations of Cr(VI) for the nine industrial complexes in Korea were in the range of 0.09 to $1.40ng/m^3$, which is similar to of the concentrations in other industrial areas around the world. The impacts of Cr(VI) emissions from industrial areas on Cr(VI) concentrations in neighboring-residential areas were considerably low, and the dispersion of Cr(VI) from industrial areas to residential areas was estimated to be 'not-significant'. Cr(VI) levels were not affected by seasonal variation, which suggests that chromium was emitted continuously from the industrial sources throughout the year. The concentration of Cr(VI) measured accounted for 0.7 to 9.4 percent of the total chromium level, which is a low percentage compared to those in other urban areas around the world. This is the first report in an international journal of a field study conducted in Korea to determine the concentration of Cr(VI) in the ambient air of industrial and residential areas.

A Study on the Performance Optimization of a Continuous Monitoring Method for Hazardous VOCs in the Ambient Atmosphere (환경대기 중 유해성 VOC에 대한 자동연속 측정방법의 성능 최적화에 관한 연구)

  • Son, Eun-Seong;Seo, Young-Kyo;Lee, Dong-Hyun;Lee, Min-Do;Han, Jin-Seok;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.6
    • /
    • pp.523-538
    • /
    • 2009
  • Recently, there has been a keen demand for real-time automatic monitoring of VOCs not only in Korea but other developed countries. We carried out this study to evaluate and to optimize the performance of a continuous automatic monitoring system for hazardous VOCs (HVOCs) in the ambient atmosphere, using an on-line GC system. The online system normally consisted of a Nafion dryer prior to a cold trap of an automatic thermal desorption apparatus and a GC system equipped with two detectors, i.e. PID and ECD. Preliminary tests conducted to check out any contamination of the system revealed an evidence of significant artifact formation of benzene, and it was found that the Nafion dryer (even brand new one) is the source of the benzene artifact. Thus, all the subsequent experiments in this study was carried out inevitably by removing the Nafion dryer. The on-line GC method was investigated with a variety of QC/QA performance criteria such as repeatability, linearity, lower detection limits, and accuracy. In order to find out the best operating condition for the on-line GC system, three different types (in terms of adsorption strength) of cold trap combinations were tested, i.e. (i) Tenax-TA and Carbopack-B combination (weak and hydrophobic); (ii) Tenax-TA, Carbopack-X and Carboxen-1000 combination (strong and hydrophilic); and (iii) Tenax-TA and Carbopack-X combination (medium and hydrophobic/hydrophilic). The USEPA TO-17 manual method was selected as a reference method to evaluate the performance of the on-line method. A series of experiments revealed that the system performance was superior to others when a cold trap packed with hydrophilic adsorbents (Tenax-TA/Carbopack-X/Carboxen-1000 combination) was used and operated at $25^{\circ}C$. However, the system with a cold trap packed with a combination of Tenax-TA and Carbopack-X is more recommended for field applications since the carboxen-1000 adsorbent is too sensitive to water vapor, and hence the performance of the system might be very unstable to humid samples or during rainy days. Furthermore, the precision and accuracy criteria of the Tenax-TA/ Carbopack-X combination were generally compatible with the triple adsorbents cold trap. The continuous automatic monitoring method is, thus, considered very useful to real-time monitoring to understand the variations of VOCs concentrations in ambient air, as it adopts much simpler procedures in sampling, analysis, and data integration steps than manual monitoring methods. However, it should be noted that there is a high possibility of benzene artifacts formation through the Nafion dryer, which is often installed to remove water vapor in air samples before being adsorbed onto the cold trap. Therefore, if a Nafion dryer is used in any studies of monitoring VOCs, the benzene contamination should be carefully examined before carrying out obtaining the data.

Determination of Polybrominated Diphenyl Ethers(PBDEs) in Soil using Gas Chromatography/Isotope Dilution Mass Spectrometry (기체크로마토그래피/동위원소 희석 질량분석법을 이용한 토양 중 폴리브롬화 디페닐에테르의 분석법)

  • Na, Yuncheol;Chang, Yoon-Seok;Kim, Hai-Dong;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • An analytical method of polybrominated diphenyl ethers in soil samples by isotope dilution method using gas chromatography/mass spectrometry (GC/MS)-selected ion monitoring (SIM) was described. PBDEs in soil were extracted with soxhlet extractor and then silica and florisil solid phase extraction (SPE) methods as purification of extract were compared. After clean-up, the extractions were analyzed by GC/MS with SIM mode. Quantitation was performed isotope dilution method using four $^{13}C$ isotopically labeled PBDEs as internal standards. This developed method was validated for eight congeners of PBDEs in the concentration range 0.04~4 ng/g in soil and the average recovery of the analytes ranged 30.8~110.8% for florisil and 44.4~110.7% for silica, respectively. The method detection limits of PBDEs were 0.04~0.3 ng/g.

Comparison of Measurement Methods for Volatile Organic Compounds in Ambient Air Using Adsorbent Tubes and Canisters (흡착관과 캐니스터를 이용한 대기 중 휘발성유기화합물 측정방법의 비교 평가)

  • Baek, Sung-Ok;Seo, Young-Kyo;Heo, Gwi-Seok;Jeon, Chan-Gon;Lee, Min-do;Han, Jin-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.305-319
    • /
    • 2016
  • This study was carried out to evaluate the performance of two sampling methods, i.e., adsorbent tubes and canisters, for the measurement of ambient volatile organic compounds (VOCs). A total of 24 target VOCs were selected from a list of 48 priority hazardous air pollutants (HAPs) in Korea. The two sampling methods were investigated with a wide range of performance criteria such as repeatability, linearity, and lower detection limits. In addition, mean relative errors (MRE) and mean duplicate precisions (MDP) were estimated by inter-lab comparison studies for duplicate field samples. Precisions for the two methods appeared to be well comparable with the performance criteria recommended by USEPA TO-15 and TO-17 for canister and adsorbent methods, respectively. Correlations and variations between the VOCs concentrations determined by the two methods were generally good in most cases. However, MREs and MDPs for individual VOCs appeared to be widely ranged, depending on each VOC. This implies that the two methods have its own advantages and disadvantages in determining a variety of VOCs in ambient air, and neither of which has absolute superiority. Finally, 9 of 24 VOCs were found to be difficult to determine by either methods due to their unstability in a canister, and lack of appropriate standard materials. Thus, it is suggested that development of measurement methods for such unstable VOCs is an urgent task from a viewpoint of HAPs management.

Firefighters' Exposure to Volatile Organic Compounds in Tyre Fire (타이어 화재 대응 소방관들의 휘발성유기화합물 노출 평가)

  • Won Kim;Inja Choi;Young-Hwan Cho;Hye-young Jung;Jiwoon Kwon;So-Yun Lee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.385-394
    • /
    • 2023
  • Objectives: Firefighters could be exposed to a range of toxic chemicals during firefighting. When tyre burns, various toxic chemicals including volatile organic compounds(VOCs) could be emitted. In this study, the researchers assessed the VOC exposure of firefighters during tyre fire suppression through biomonitoring. Methods: There was a big tyre fire on 12 March 2023. Of the responding firefighters, we recruited 14 participants to collect their urine after firefighting. One week later, researchers collected firefighters' urine again right after their off-duty period. We analyzed each metabolite of benzene, toluene, xylene, and styrene in urine and compared their exposure level based on sampling time. Results: The detection rate for metabolite of benzene, toluene, styrene, and xylene in urine sampled at each time was 43%-64%, 100%, 86%-100%, and 100%, respectively. Except for the benzene, metabolite levels measured in urine after firefighting were similar to that from off-duty period. However, the median concentration of benzene metabolite in urine sampled after firefighting was three times higher compared to that from off-duty period(34.2 ㎍/g crea. and 10.9 ㎍/g crea., respectively.) The estimated airborne concentration of benzene calculated from metabolite level in urine was 0.16 ppm, which exceeded the recommended exposure level set by the National Institute for Occupational Safety and Health. Conclusions: This study shows that firefighters could be exposed to the high level of VOCs including benzene during their firefighting especially at tyre fire. These results could be used as a valuable data to prove firefighters' exposure to hazardous chemicals during their duty.