• Title/Summary/Keyword: Environmental hazardous detection

Search Result 56, Processing Time 0.026 seconds

Study on High Sensitivity Metal Oxide Nanoparticle Sensors for HNS Monitoring of Emissions from Marine Industrial Facilities (해양산업시설 배출 HNS 모니터링을 위한 고감도 금속산화물 나노입자 센서에 대한 연구)

  • Changhan Lee;Sangsu An;Yuna Heo;Youngji Cho;Jiho Chang;Sangtae Lee;Sangwoo Oh;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.30-36
    • /
    • 2022
  • A sensor is needed to continuously and automatically measure the change in HNS concentration in industrial facilities that directly discharge to the sea after water treatment. The basic function of the sensor is to be able to detect ppb levels even at room temperature. Therefore, a method for increasing the sensitivity of the existing sensor is proposed. First, a method for increasing the conductivity of a film using a conductive carbon-based additive in a nanoparticle thin film and a method for increasing ion adsorption on the surface using a catalyst metal were studied.. To improve conductivity, carbon black was selected as an additive in the film using ITO nanoparticles, and the performance change of the sensor according to the content of the additive was observed. As a result, the change in resistance and response time due to the increase in conductivity at a CB content of 5 wt% could be observed, and notably, the lower limit of detection was lowered to about 250 ppb in an experiment with organic solvents. In addition, to increase the degree of ion adsorption in the liquid, an experiment was conducted using a sample in which a surface catalyst layer was formed by sputtering Au. Notably, the response of the sensor increased by more than 20% and the average lower limit of detection was lowered to 61 ppm. This result confirmed that the chemical resistance sensor using metal oxide nanoparticles could detect HNS of several tens of ppb even at room temperature.

Ex vivo High-resolution Optical Coherence Tomography (OCT) Imaging of Pleural Reaction after Pleurodesis Using Talc

  • Ahn, Yeh-Chan;Oak, Chulho;Park, Jung-Eun;Jung, Min-Jung;Kim, Jae-Hun;Lee, Hae-Young;Kim, Sung Won;Park, Eun-Kee;Jung, Maan Hong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.607-613
    • /
    • 2016
  • The pleura is known as an end target organ of exposure to toxic environmental materials such as fine particulate matter and asbestos. Moreover, long-term exposure to hazardous materials can eventually lead to fatal lung disease such as diffuse pleural fibrosis or mesothelioma. Chest computed tomography (CT) and ultrasound are gold standard imaging modalities for detection of advanced pleural disease. However, a diagnostic tool for early detection of pleural reaction has not been developed yet due to difficulties in imaging ultra-fine structure of the pleura. Optical coherence tomography (OCT), which provides cross-sectional images of micro tissue structures at a resolution of 2-10 μm, can image the mesothelium with a thickness of ~100 μm and therefore enables investigation of the early pleural reaction. In this study, we induced the early pleural reaction according to a time sequence after pleurodesis using talc, which has been widely used in the clinical field. The pleural reaction in talc grouped according to the time sequence (1st, 2nd, 4th weeks) showed a significant thickening (average thickness: 45 ± 7.5 μm, 80 ± 10.7 μm, 90 ± 12.5 μm), while the pleural reaction in sham and normal groups showed pleural change from normal to minimal thickening (average thickness: 16 ± 5.5 μm, 17 ± 4.5 μm, 15 ± 6.5 μm, and 12 ± 7.5 μm, 13 ± 2.5 μm, 12 ± 3.5 μm). The measurement of pleural reaction by pathologic examinations was well-matched with the measurement by OCT images. This is the first study for measuring the thickness of pleural reactions using a biophotonic modality such as OCT. Our results showed that OCT can be useful for evaluating the early pleural reaction.

Public Health Risks: Chemical and Antibiotic Residues - Review -

  • Lee, M.H.;Lee, H.J.;Ryu, P.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.402-413
    • /
    • 2001
  • Food safety is a term broadly applied to food quality that may adversely affect human health. These include zoonotic diseases and acute and chronic effects of ingesting natural and human-made xenobiotics. There are two major areas of concern over the presence of residues of antibiotics in animal-derived foodstuffs with regard to human health. The first is allergic reactions. Some antibiotics, such as penicillins can evoke allergic reactions even though small amounts of them are ingested or exposed by parenteral routes. The second is development of antibiotic resistance in gut bacteria of human. Recently multi-resistant pneumococcal, glycopeptide-resistant enterococci and gram negative bacteria with extended-spectrum $\beta$-lactamases have spread all over the world, and are now a serious therapeutic problem in human. Although it is evident that drugs are required in the efficient production of meat, milk and eggs, their indiscriminate use should never be substituted for hygienic management of farm. Drug should be used only when they are required. In addition to veterinary drugs, environmental contaminants that were contaminated in feed, water and air can make residues in animal products. Mycotoxins, heavy metals, pesticides, herbicides and other chemicals derived from industries can be harmful both to animal and human health. Most of organic contaminants, such as dioxin, PCBs and DDT, and metals are persistent in environment and biological organisms and can be accumulated in fat and hard tissues. Some of them are suspected to have endocrine disrupting, carcinogenic, teratogenic, immunodepressive and nervous effects. The governmental agencies concerned make efforts to prevent residue problems; approval of drugs including withdrawal times of each preparation of drugs, establishment of tolerances, guidelines regarding drug use and sanitation enforcement of livestock products. National residue program is conducted to audit the status of the chemical residues in foods. Recently HACCP has been introduced to promote food safety from farm to table by reducing hazardous biological, chemical and physical factors. Animal Production Food Safety Program, Quality Assurance Programs, Food Animal Residue Avoidance Databank are para- or non-governmental activities ensuring food safety. This topic will cover classification and usage or sources of chemical residues, their adverse effects, and chemical residue status of some countries. Issues are expanded to residue detection methodologies, toxicological and pharmacokinetic backgrounds of MRL and withdrawal time establishments, and the importance of non-governmental activities with regard to reducing chemical residues in food.

Condition of ex situ Bioremediation of Polycyclic Aromatic Hydrocarbons in Marine Sediments (해양퇴적토내 다환방향족탄화수소 생분해 증진 조건 연구)

  • Jung, Hong-Bae;Yun, Tian;Lee, Hee-Soon;Kwon, Kae-Kyoung;Kim, Sang-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.179-185
    • /
    • 2005
  • Polycyclic aromatic hydrocarbons (PAHs) are a kind of toxic environmental pollutants and has been accumulated usually in marine sediments. Due to their potential hazardous to human, removal of PAHs from environments has been great concern. In the present study, the effect of microbial inoculation and the supplementation of mixed form cyclodextrin (M-CD) was assessed in the pre-sterilized or nonsterilized microcosms for optimizing operational conditions for ex situ bioremediation of sediments contaminated by PAHs. Activity of electron transport system (ETSA) was increased by the addition of M-CD regardless of inoculation of microorganisms in microcosms without sterilization. The degradation rate of PAHs in sterilized microcosms was app. 9-20% by the inoculation of single strain and 24-37% by the inoculation of microbial consortium supplemented with 1% M-CD, respectively. The degradation was not observed in microcosms without sterilization under the same conditions. The proportion of inoculated microorganisms also decreased in nonsterilized microcosms. Signals of inoculated bacteria were decreased to detection limit after 2 days in the microcosms without M-CD. In conclusion, microbial inoculation with appropriate carbon sources and removal of natural flora and grazers are required for the efficient ex situ bioremediation of sediments contaminated by PAHs in bioslurry reactor.

  • PDF

Occurrence and Distribution of Selected Veterinary Antibiotics in Soils, Sediments and Water Adjacent to a Cattle Manure Composting Facility in Korea (국내 우분 퇴비화 시설 인근 농경지 및 수계 중 Tetracycline 및 Sulfonamide 계열 항생물질의 분포특성)

  • Lim, Jung-Eun;Kim, Sung-Chul;Lee, Hyeon-Yong;Kwon, Oh-Kyung;Yang, Jae-E.;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.845-854
    • /
    • 2009
  • There has been increased concern regarding the release of antibiotics to different environmental compartments due to the possibility of the development of antibiotic resistant bacteria. However, limited information is available regarding the occurrence, fate, and transport of antibiotics in Korea in both the aqueous phase and in solid phases such as sediment and soil. Therefore, this study was conducted to monitor the concentration of released antibiotics in surface water, sediment, and soil adjacent to a cattle manure composting facility in Korea. Specifically, the following six antibiotics were monitored: tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC), sulfamethazine (SMT), sulfamethoxazole (SMX), and sulfathiazole (STZ). To extract and quantify the antibiotics from different environmental compartments, solid phase extraction (SPE) and high performance liquid chromatography mass spectrometry (HPLC/MS) techniques were adopted. The concentration of the six antibiotics ranged from below the detection limit (BDL) to 0.71 ${\mu}g$/L in surface water, from BDL to 27.61 ${\mu}g$/L in sediment, and from 0.12 to 157.33 ${\mu}g$/L in soil. In addition, higher concentrations of antibiotics were observed in surface water and sediment at locations closer to the composting facility indicating that composting is the source of the antibiotics found in the environment. Furthermore, higher concentrations of antibiotics were observed in the solid phase (sediment and soil) than the aqueous phase. These findings indicate that the possibility of antibiotic resistant bacteria is increased because such bacteria are more stable in the solid phase. Overall, longterm monitoring of the aqueous phase and solid phase is necessary to gain a better understanding of the impact of antibiotics from source on the environment in Korea.

Improvement of analytical method for pymetrozine in citrus fruits (감귤류 과일의 피메트로진 정량을 위한 분석법 개선)

  • Jeon, Jun-Ho;Chun, Su-Hyun;Kim, Min-Hyuk;Kim, Mi-Ok;Lee, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • It is difficult to analyze pymetrozine in citrus fruits using the hydromatrix method because of its low efficiency of purification and overlap of matrix and pymetrozine peaks. Liquid-liquid extraction can analyze pymetrozine in citrus fruits using dichloromethane. Since low pH interferes with the extraction of pymetrozine, the extracts of citrus fruits were maintained over pH 7.0 by adding borax buffer and 1 N NaOH in the improved method. According to the improved method, citrus fruits (such as lemon, lime, orange, tangerine, and grapefruit) were extracted and purified for HPLC-photo diode array analysis. The results of validation were as follows: $4.360{\mu}g/kg$ of limit of detection, $14.533{\mu}g/kg$ of limit of quantitation, and 0.007 mg/kg of method quantitative limit. Citrus fruits spiked with pymetrozine showed a recovery range from 71.8 to 83.7% and a coefficient of variation below 6%. Thus, the improved method can efficiently analyze pymetrozine in citrus fruits.