• Title/Summary/Keyword: Environmental risk assessment

Search Result 1,493, Processing Time 0.03 seconds

Application of the Risk-Based Analysis to EIA (환경영향평가에 있어 위해성분석 기법의 도입)

  • Chung, Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.3
    • /
    • pp.1-8
    • /
    • 1995
  • In generally speaking, the purpose of Environmental Impact Assessment(EIA) is to give the environment its due place in the decision-making process by clearly ealuating the environmental consequence of a proposed activity before action is taken. The introduction of conventional EIA is to be seen as an end product of a very long evolutionary process, starting with rudimentary but evolving pollution control measures for air, water, noise, land and chemicals, each governed by separate, and separately administered pieces of legislation. In EIA process, the measures of status, scoping, proposed mitigation and communication have not been very quantitative in their significancy. Of course, the determinations have uncertainity in the implications for significant impacts. To improve the determination of significant impacts, some more comprehensive methodologies of EIA has been proposed with the concepts of risk analysis in the proposed projects. The concepts of risk analysis has been introduced to the expression of human health impairment due to environmental pollutants since the early 1980's. The risk analysis being meant by the statistical significance of impact has a process quantitatively considering uncertainities and importances of ecological systems and human health as well. The process of risk analysis shows assessment, doseresponse in toxicity, exposure assessment and risk characterization. With the risk assessment, it could be suggested for the proper measurements against their anticipated risk in the EIA. This paper deals the priciples developing process and application of the risk-based analysis in EIA.

  • PDF

Environmental Risk Assessment for Ivermectin, Praziquantel, Tamiflu and Triclosan (Ivermectin, praziquantel, tamiflu, triclosan의 환경위해성평가)

  • Ryu, Taekwon;Kim, Jungkon;Kim, Kyungtae;Lee, Jaewoo;Kim, Jieun;Cho, Jaegu;Yoon, Junheon;Lee, Jaean;Kim, Pilje;Ryu, Jisung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.2
    • /
    • pp.196-203
    • /
    • 2018
  • Objectives: The purpose of this study was to assess environmental risk on the emerging contaminants of concern, such as ivermetin, parziquantel, tamiflu and triclosan. Furthermore, we tried to provide a more efficient management practice and a basis for future studies of risk assessment on those substances. Methods: Predicted no effect concentration (PNEC) and predicted environmental concentration (PEC) were determined through modeling and literature reviews. Environmental risk assessment was evaluated by calculating HQ (hazard quotient) by a comparison of PEC (or measured environmental concentration (MEC)) and PNEC. Results: HQ value of tamiflu calculated from MEC was 1.9E-03. For ivermectin and triclosan, the HQ values were not available because these were not detected in the aquatic environment. The toxicity of ivermectin and triclosan showed a very low value, indicating a high level of HQ. However, praziquantel can be categorized into the material that do not require management since they have less than HQ 1. Conclusion: Based on the results of the initial risk assessment, it is assumed that the ivermectin and triclosan have potential to cause direct adverse effects on the aquatic environment. To conduct an accurate environmental risk assessment, the further study on PEC estimation of such contaminants should be actively carried out.

Development of Korean Exposure Factors for Children in Korea (국내 어린이 위해성평가를 위한 노출계수 연구)

  • Yoon, Hyojung;Seo, Jungkwan;Kim, Taksoo;Kim, Joohyun;Jo, Areum;Lee, Byeongwoo;Lim, Hyunwoo;Lee, Daeyeop;Kim, Pilje;Choi, Kyunghee;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.3
    • /
    • pp.167-175
    • /
    • 2017
  • Objectives: Children may be more exposed to certain environmental contaminants because they react with greater sensitivity and have different food intakes and breathing rate per unit of body weight compared to adults. The aim of this study was to determine general exposure factors such as skin surface area, period and frequency of exposure, and others among Korean children aged ${\leq}18$ years old. This study was carried out as the first of its kind in Korea. Methods: We developed 23 recommended exposure factors for Korean children aged 0 to 18 years by reclassifying raw data from the National Health and Nutrition Examination Survey and the National Statistical Information Service, as well as through investigation by experiments in the absence of related data. Results: Reflecting the activity patterns of about 9,000 children, the daily inhalation rates for long-term exposure ranged from $9.49m^3/day$ for children from birth to <2 years to $14.98m^3/day$ for children aged 16 to <18 years. The research found that Korean children spent an average of 22.21 hours indoors, 0.67 hours outdoors, and 1.12 hours in-transit every day. Young children (${\leq}2$ years old) spent approximately 34 more minutes outdoors on weekends than they did on weekdays. Conclusion: Various physiological variables in the human body reflect characteristics of children that can directly influence risk exposure. Therefore, the identification of general exposure factors based on Korean children is required for appropriate risk assessment.

Application of Biomarkers for the Assessment of Carcinogen Exposure and Cancer Risk (발암물질 노출량 산출 및 암 위해성 평가에 있어서 Biomcrker의 활용)

  • 이병무
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.2
    • /
    • pp.95-101
    • /
    • 1999
  • Risk Assessment is an important area in toxicology and the methodology for risk assessment has been developed. Mathematical models used for risk assessment include one-hit multi-hit, two-stage, probit logistic, multistage, and linearized multistage models. For the assessment of exposure dose, environmental monitoring has been applied, but it has limitation to accurately assess exposure level because the levels in the air, water, foods, and soil may vary depending on time of sampling. In addition, humans can be exposed to various sources of exposure and thus it will be impossible to estimate the total level of exposure in humans by environmental monitoring. To eliminate the limitation of environmental monitoring, a direct measurement of toxic materials or modified biomolecules (called biomarkers) associated with the exposure of toxic materials is needed. Here, scientific basis of biomarkers and future direction have been considered for the assessment of carcinogen exposure and cancer risk in humans.

  • PDF

Study on Environmental Risk Assessment for Potential Effect of Genetically Modified Nicotiana benthamiana Expressing ZGMMV Coat Protein Gene

  • Kim, Tae-Sung;Yu, Min-Su;Koh, Kong-Suk;Oh, Kyoung-Hee;Ahn, Hong-Il;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.353-359
    • /
    • 2006
  • Transgenic Nicotiana benthamiana plants harboring the coat protein(CP) gene of Zucchini green mottle mosaic virus(ZGMMV) were chosen as a model host for the environmental risk assessment of genetically modified plants with virus resistance. This study was focused on whether new virus type may arise during serial inoculation of one point CP mutant of ZGMMV on the transgenic plants. In vitro transcripts derived from the non-functional CP mutant were inoculated onto the virus-tolerant and -susceptible transgenic N. benthamiana plants. Any notable viral symptoms that could arise on the inoculated transgenic host plants were not detected, even though the inoculation experiment was repeated a total of ten times. This result suggests that potential risk associated with the CP-expressiing transgenic plants may not be significant. However, cautions must be taken as it does not guarantee environmental safety of these CP-mediated virus-resistant plants, considering the limited number of the transgenic plants tested in this study. Further study at a larger scale is needed to evaluate the environmental risk that might be associated with the CP-mediated virus resistant plant.

Ecological Risk Assessment of 4,4'-Methylenedianiline (4,4'-Methylenedianiline의 환경매체별 위해성평가)

  • Hyun Soo Kim;Daeyeop Lee;Kyung Sook Woo;Si-Eun Yoo;Inhye Lee;Kyunghee Ji;Jungkwan Seo;Hun-Je Jo
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.334-343
    • /
    • 2023
  • Background: South Korea's Act on Registration and Evaluation, etc. of Chemicals (known as K-REACH) was established to protect public health and the environment from hazardous chemicals. 4,4'-Methylenedianiline (MDA), which is used as a major intermediate in industrial polymer production and as a vulcanizing agent in South Korea, is classified as a toxic substance under the K-REACH act. Although MDA poses potential ecological risks due to industrial emissions and hazards to aquatic ecosystems, no ecological risk assessment has been conducted. Objectives: The aim of this study is to assess the ecological risk of MDA by identifying the actual exposure status based on the K-REACH act. Methods: Various toxicity data were collected to establish predicted no effect concentrations (PNECs) for water, sediment, and soil. Using the SimpleBox Korea v2.0 model with domestic release statistical data and EU emission factors, predicted environmental concentrations (PECs) were derived for ten sites, each referring to an MDA-using company. Hazard quotient (HQ) was calculated by ratio of the PECs and PNECs to characterize the ecological risk posed by MDA. To validate the results of modeling-based assessment, concentration of MDA was measured using in-site freshwater samples (two to three samples per site). Results: PNECs for water, sediment, and soil were 0.000525 mg/L, 4.36 mg/kg dw, and 0.1 mg/kg dw, respectively. HQ for surface water and sediment at several company sites exceeded 1 due to modeling data showing markedly high PEC in each environmental compartment. However, in the results of validation using in-site surface water samples, MDA was not detected. Conclusions: Through an ecological risk assessment conducted in accordance with the K-REACH act, the risk level of MDA emitted into the environmental compartments in South Korea was found to be low.

Deriving Ecological Protective Concentration of Cadmium for Korean Soil Environment

  • Lee, Woo-Mi;Nam, Sun-Hwa;An, Youn-Joo
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.241-246
    • /
    • 2013
  • For effective and efficient environmental management, developed countries, such as the Netherlands, UK, Australia, Canada, and United States apply ecological risk assessment, and they have an autonomous risk assessment methodology to protect native receptors. In this study, soil ecological protective concentration (EPC) of cadmium in Korea was derived using Korean ecological risk assessment methodology. The soil EPC of cadmium was calculated using probabilistic ecological risk assessment based on species sensitivity distribution. The soil EPC was calculated according to land use for residential/agricultural and industrial/commercial purposes. The chronic soil EPCs for residential/agricultural and industrial/commercial lands were derived to be 1.58 and 9.60 mg/kg, respectively. These values were similar to soil EPC of European Commission, the Netherlands, UK, and Canada. However, these values were lower than the established Korean soil standard, because the current soil standard was based on human risk. Therefore, the impact on an ecosystem when establishing environmental standard should be considered.

Application of Indoor Air Modelling for Using Health Risk Assessment in Environmental Impact Assessment (환경영향평가에서 건강위해성평가 기법을 이용하기 위한 실내공기 모델링 적용)

  • Yang, Won-Ho;Son, Bu-Soon;Park, Jong-An;Kim, Im-Soon;Han, Sang-Wook
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.3
    • /
    • pp.211-221
    • /
    • 2001
  • Recognizing interaction between the environment and humans, the EIA(environmental impact assessment) movement has sought to promote more environmentally sound and informed decisions for the sake of human welfare. Therefore, most EIA programs require the consideration of human health impacts. Yet relatively few EIA documents adequately address those impacts. This study was carried out to investigate the role of EIA for reuniting the environment and human health, for preventing and reducing significant health risks, and for improving human health impact assessment by means of risk assessment. Risk assessment consists of 4 components; hazard identification, dose-response assessment, exposure assessment and risk characterization. Since most people spent their times in indoor, indoor air quality modelling can be used in exposure assessment and risk assessment. In this study, indoor $NO_2$ concentration and personal $NO_2$ exposure were estimated by Box Model using mass balance equation and time weighted average, respectively. The estimated indoor $NO_2$ concentration and the personal $NO_2$ exposure were compared by those measured, respectively. Subsequntly, health effect was assessed with these results. Consequently, exposure assessment and risk assessment using indoor air quality model may be considered to be applicable to EIA.

  • PDF

Application of Probabilistic Health Risk Analysis in Life Cycle Assessment -Part I : Life Cycle Assessment for Environmental Load of Chemical Products using Probabilistic Health Risk Analysis : A Case Study (전과정평가에 있어 확률론적 건강영향분석기법 적용 -Part II : 화학제품의 환경부하 전과정평가에 있어 건강영향분석 모의사례연구)

  • Park, Jae-Sung;Choi, Kwang-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.203-214
    • /
    • 2000
  • Health risk assessment is applied to streamlining LCA(Life Cycle Assessment) using Monte carlo simulation for probabilistic/stochastic exposure and risk distribution analysis caused by data variability and uncertainty. A case study was carried out to find benefits of this application. BTC(Benzene, Trichloroethylene, Carbon tetrachloride mixture alias) personal exposure cases were assumed as production worker(in workplace), manager(in office) and business man(outdoor). These cases were different from occupational retention time and exposure concentration for BTC consumption pattern. The result of cancer risk in these 3 scenario cases were estimated as $1.72E-4{\pm}1.2E+0$(production worker; case A), $9.62E-5{\pm}1.44E-5$(manger; case B), $6.90E-5{\pm}1.16E+0$(business man; case C), respectively. Portions of over acceptable risk 1.00E-4(assumed standard) were 99.85%, 38.89% and 0.61%, respectively. Estimated BTC risk was log-normal pattern, but some of distributions did not have any formal patterns. Except first impact factor(BTC emission quantity), sensitivity analysis showed that main effective factor was retention time in their occupational exposure sites. This case study is a good example to cover that LCA with probabilistic risk analysis tool can supply various significant information such as statistical distribution including personal/environmental exposure level, daily time activity pattern and individual susceptibility. Further research is needed for investigating real data of these input variables and personal exposure concentration and application of this study methodology.

  • PDF