• Title/Summary/Keyword: Epithelial growth

Search Result 472, Processing Time 0.035 seconds

Utilization of Ruminal Epithelial Cells by Ruminococcus albus, with or without Rumen Protozoa, and Its Effect on Bacterial Growth

  • Goto, M.;Karita, S.;Yahaya, M.S.;Kim, W.;Nakayama, E.;Yamada, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Effects of supplementation with ruminal epithelial cells on fiber-degrading activity and cell growth of Ruminococcus albus (R. albus, strain 7) was tested using a basal substrate of rice straw and formulated concentrate. Cultures of R. albus alone and R. albus with rumen protozoa were grown at $39^{\circ}C$ for 48 h with an 8.4% crude protein (CP) substrate, 33% of the CP supplemented with either ruminal epithelial cells or defatted soybean meal. The ruminal epithelial cells had lower amounts of rumen soluble and degradable protein fractions as compared to defatted soybean meal, as determined by an enzymatic method, and the same was found with amino acid composition of protein hydrolysates. Ruminal epithelial cells were directly utilized by the R. albus, and resulted in greater growth of cell-wall free bacteria compared to defatted soybean meal. The effect of epithelial cells on bacterial growth was enhanced by the presence of rumen protozoa. In consistency with cultures of R. albus and R. albus with rumen protozoa, fermentative parameters such as dry matter degradability and total volatile fatty acid did not differ between supplementation with ruminal epithelial cells or defatted soybean meal.

Effects of Keratinocyte Growth Factor on the Uterine Endometrial Epithelial Cells in Pigs

  • Ka, Hak-Hyun;Bazer, Fuller W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1708-1714
    • /
    • 2005
  • Keratinocyte growth factor (KGF) functions in epithelial growth and differentiation in many tissues and organs. KGF is expressed in the uterine endometrial epithelial cells during the estrous cycle and pregnancy in pigs, and receptors for KGF (KGFR) are expressed by conceptus trophectoderm and endometrial epithelia. KGF has been shown to stimulate the proliferation and differentiation of conceptus trophectoderm. However, the role of KGF on the endometrial epithelial cells has not been determined. Therefore, this study determined the effect of KGF on proliferation and differentiation of endometrial epithelial cells in vitro and in vivo using an immortalized porcine luminal epithelial (pLE) cell line and KGF infusion into the uterine lumen of pigs between Days 9 and 12 of estrous cycle. Results showed that KGF did not stimulate proliferation of uterine endometrial epithelial cells in vitro and in vivo determined by the $^3$H]thymidine incorporation assay and the proliferating cell nuclear antigen staining, respectively. Effects of KGF on expression of several markers for epithelial cell differentiation, including integrin receptor subunits $\alpha$4, $\alpha$5 and $\beta$1, plasmin/trypsin inhibitor, uteroferrin and retinol-binding protein were determined by RT-PCR, Northern and slot blot analyses, and immunohistochemisty, and KGF did not affect epithelial cell differentiation in vitro and in vivo. These results show that KGF does not induce epithelial cell proliferation and differentiation, suggesting that KGF produced by endometrial epithelial cells acts on conceptus trophectoderm in a paracrine manner rather than on endometrial epithelial cells in an autocrine manner.

Lactobacillus acidophilus Contributes to a Healthy Environment for Vaginal Epithelial Cells

  • Pi, Woo-Jin;Ryu, Jae-Sook;Roh, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.3
    • /
    • pp.295-298
    • /
    • 2011
  • Lactobacillus species in the female genital tract are thought to act as a barrier to infection. Several studies have demonstrated that lactobacilli can adhere to vaginal epithelial cells. However, little is known about how the adherence of lactobacilli to vaginal epithelial cells affects the acidity, cell viability, or proliferation of the lactobacilli themselves or those of vaginal epithelial cells. Lactobacillus acidophilus was co-cultured with immortalized human vaginal epithelial cells (MS74 cell line), and the growth of L. acidophilus and the acidity of the culture medium were measured. MS74 cell density and viability were also assessed by counting cell numbers and observing the cell attachment state. L. acidophilus showed exponential growth for the first 6 hr until 9 hr, and the pH was maintained close to 4.0-5.0 at 24 hr after culture, consistent with previous studies. The growth curve of L. acidophilus or the pH values were relatively unaffected by co-culture with MS74 cells, confirming that L. acidophilus maintains a low pH in the presence of MS74 cells. This co-culture model could therefore potentially be used to mimic vaginal conditions for future in vitro studies. On the other hand, MS74 cells co-cultured with L. acidophilus more firmly attached to the culture plate, and a higher number of cells were present compared to cells cultured in the absence of L. acidophilus. These results indicate that L. acidophilus increases MS74 cell proliferation and viability, suggesting that lactobacilli may contribute to the healthy environment for vaginal epithelial cells.

Transforming Growth Factor-${\beta}$ (TGF-${\beta}$) Induces Invasion and Migration of Ras- Transformed MCF10A Human Breast Epithelial Cells

  • Kim, Mi-Sung;Moon , A-Ree
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.327.3-328
    • /
    • 2002
  • Transforming growth factor-${\beta}$ (TGF-${\beta}$), a hormonally active polypeptide found in normal and transformed tissues. regulates cellular growth and phenotyphic plasticity. We have previously shown that H-ras. but not N-ras. induces invasive phenotype in MCF10A human breast epithelial cells. In this study. we wished to examine the effect of TGF-${\beta}$ on H-ras-induced invasion and motility in MCFI 10A cells by performing in vitro invasion assay and wound migration assay. (omitted)

  • PDF

Establishment and Characterization of Three Immortal Bovine Muscular Epithelial Cell Lines

  • Jin, Xun;Lee, Joong-Seob;Kwak, Sungwook;Lee, Soo-Yeon;Jung, Ji-Eun;Kim, Tae-Kyung;Xu, Chenxiong;Hong, Zhongshan;Li, Zhehu;Kim, Sun-Myung;Pian, Xumin;Lee, Dong-Hee;Yoon, Jong-Taek;You, Seungkwon;Choi, Yun-Jaie;Kim, Hyunggee
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.29-33
    • /
    • 2006
  • We have established three immortal bovine muscular epithelial (BME) cell lines, one spontaneously immortalized (BMES), the second SV40LT-mediated (BMEV) and the third hTERT-mediated (BMET). The morphology of the three immortal cell lines was similar to that of early passage primary BME cells. Each of the immortal cell lines made cytokeratin, a typical epithelial marker. BMET grew faster than the other immortal lines and the BME cells, in 10% FBS-DMEM medium, whereas neither the primary cells nor the three immortal cell lines grew in 0.5% FBS-DMEM. The primary BME cells and the immortal cell lines, with the exception of BMES, made increasing amounts of p53 protein when treated with doxorubicin, a DNA damaging agent. On the other hand, almost half of the cells in populations of the three immortal cell lines may lack $p16^{INK4a}$ regulatory function, compared to primary BME cells that were growth arrested by enforced expression of $p16^{INK4a}$. In soft-agar assays, the primary cells and immortal cell lines proved to be less transformed in phenotype than HeLa cells. The three immortal epithelial-type cell lines reported here are the first cell lines established from muscle tissue of bovine or other species.

Protective Effects of a Novel Probiotic Strain of Lactobacillus plantarum JSA22 from Traditional Fermented Soybean Food Against Infection by Salmonella enterica Serovar Typhimurium

  • Eom, Jeong Seon;Song, Jin;Choi, Hye Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.479-491
    • /
    • 2015
  • Lactobacillus species have been shown to enhance intestinal epithelial barrier function, modulate host immune responses, and suppress the growth of pathogenic bacteria, yeasts, molds, and viruses. Thus, lactobacilli have been used as probiotics for treating various diseases, including intestinal disorders, and as biological preservatives in the food and agricultural industries. However, the molecular mechanisms used by lactobacilli to suppress pathogenic bacterial infections have been poorly characterized. We previously isolated Lactobacillus plantarum JSA22 from buckwheat sokseongjang, a traditional Korean fermented soybean food, which possessed high enzymatic, fibrinolytic, and broad-spectrum antimicrobial activity against foodborne pathogens. In this study, we investigated the effects of L. plantarum JSA22 on the growth of S. Typhimurium and S. Typhimurium-induced cytotoxicity by stimulating the host immune response in intestinal epithelial cells. The results showed that coincubation of S. Typhimurium and L. plantarum JSA22 with intestinal epithelial cells suppressed S. Typhimurium infection, S. Typhimurium-induced NF-κB activation, and IL-8 production, and lowered the phosphorylation of both Akt and p38. These data indicated that L. plantarum JSA22 has probiotic properties, and can inhibit S. Typhimurium infection of intestinal epithelial cells. Our findings can be used to develop therapeutic and prophylactic agents against pathogenic bacteria.

TGF-$\beta$ INDUCES INVASIVE PHENOTYPE OF MCF10A HUMAN BREAST EPITHELIAL CELLS

  • Kim, Mi-Sung;Aree Moon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.141-141
    • /
    • 2002
  • Transforming growth factor-${\beta}$ (TGF-${\beta}$), a hormonally active polypeptide found in normal and transformed tissues, regulates cellular growth and phenotyphic plasticity. We have previously shown that H-ras, but not N-ras, induces invasive phenotype in MCF10A human breast epithelial cells.(omitted)

  • PDF

Allicin-induced apoptosis of gastric epithelial cells is associated with changes of caspase-independent effector and involvement of PKA

  • Baeg, Hye-Kyoung;Rhee, Dong-Kwon;Pho, Suhk-Neung
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.166.2-166.2
    • /
    • 2003
  • Garlic (Allium sativum) has been used as a general food and a remedy in Oriental for a long time. Since garlic compounds have been also shown to inhibit growth of tumors and to modulate the activity of carcinogenesis, the effects of allicin on growth and survival in human gastric epithelial cells were evaluated by cell viability, cell cycle analysis and DNA fragmentation. Protein levels of cytochrome C, Bcl-xL, Bax and AIF were detected by Western blotting. Effects of recombinant VacA on caspase proteases activity were also determined. (omitted)

  • PDF

Hormonal Regulation of Insulin-Like Growth Factor Binding Protein Secretion by a Bovine Mammary Epithelial Cell Line

  • Kim, W.Y.;Chow, J.C.;Hanigan, M.D.;Calvert, C.C.;Ha, J.K.;Baldwin, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.233-239
    • /
    • 1997
  • A mammary epithelial cell line (MAC-T) established as a model for lactation was utilized to identify and characterize effects of various hormones upon insulin-like growth factor binding protein secretion. Ligand and immunoblot analyses of conditioned media indicated that insulin-like growth factor binding protein-2 was secreted by MAC-T cells. Insulin-like growth factor-I stimulated insulin-like growth factor binding protein-2 secretion in a dose-dependent manner, but prolactin and bovine somatotropin did not alter insulin-like growth factor binding protein-2 secretion. Insulin increased and cortisol decreased insulin-like growth factor binding protein-2 secretion. Effects of insulin-like growth factor-I on insulin-like growth factor binding protein-2 secretion support previous studies using primary cultures of bovine mammary cells and bovine fibroblasts. Effects of cortisol and insulin on insulin-like growth factor binding protein-2 secretion may be explained by changes in protein synthesis. In addition, supraphysiological doses of insulin can cross-react with the insulin-like growth factor-I receptor and stimulate insulin-like growth factor binding protein-2 secretion. MAC-T cells provide a model system to study mechanisms that regulate local insulin-like growth factor-I bioactivity.

Weissella confusa Strain PL9001 Inhibits Growth and Adherence of Genitourinary Pathogens

  • Lee, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.680-685
    • /
    • 2004
  • The capability of lactic acid bacteria (LABs) to adhere to intestinal epithelial cells and vaginal epithelial cells is an important factor in the formation of a barrier to prevent the colonization of pathogenic bacteria. In addition, the ability to coaggregate with pathogens and production of antimicrobial agents also allow LABs to fight against pathogens. In this work, Weissella confusa PL9001 was tested for its ability to inhibit the growth and adherence of genitourinary pathogens, including Candida albicans, Escherichia coli, Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium (VRE), isolated from the urine of hospitalized female patients. W. confusa PL9001 was found to coaggregate with the four pathogens, as observed with a light microscope and scanning electron microscope. In competition, exclusion, and displacement tests, the adherence of the pathogens to T24 bladder epithelial cells was also inhibited by W. confusa PL9001. Accordingly, these results suggest that W. confusa PL9001 is potentially useful for both preventive and therapeutic treatment of genitourinary infections.