• Title/Summary/Keyword: Epoxy-acrylate

Search Result 38, Processing Time 0.026 seconds

Flame Retardancy of UV-Cured Epoxy Acrylate Resin Containing Combined Flame Retardants (혼합 난연제를 함유하는 UV 경화형 Epoxy Acrylate Resin의 난연 특성)

  • Kim, Ho-Gyum;Lee, Dong-Ho;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.53-57
    • /
    • 2007
  • In this study, the flame retardancy and tensile properties of epoxy acrylate resin containing flame retardants based on phosphorous, bromine or metal hydroxide are investigated. It was found that the enhancement in flame retardancy of epoxy acrylate with decabromodiphenyl oxide (DECA) addition was better than the addition of 2,2,2-trichloroethyl dichlorophosphate (TCEDP). It seems that the high loading of TCEDP may delay the formation of crosslinking network and consequently decreases the conversion of epoxy acrylate. It was found that magnesium hydroxide ($Mg(OH)_2$) does not improve the flame retardancy of epoxy acrylate after added up to 40 wt%. The synergic effects were clearly observed for epoxy acrylate containing DECA/TCEDP combined flame retardants.

Characterization of Electron Beam Cured Epoxy Acrylate (에폭시 아크릴레이트의 전자선 영향 평가)

  • Shin, Jin-Wook;Oh, Byung-Hwan;Ko, Keum-Jin;Jeun, Joon Pyo;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.271-276
    • /
    • 2010
  • Epoxy resin has wide application in various industrial fields because of their good mechanical strength, superiority adhesion and low shrinkage etc. And the typical curing method for epoxy resins is thermal and press compaction. However, a curing method was used electron beam process in this study. Epoxy acrylate was fabricated from mixture of epoxy, acrylic acid, tetraphenylporphyrin (TPP) and hydroquinone monomethyl ether (MEHQ) with mole ratios. Then electron beam irradiation effect on the curing of the epoxy acrylate resin was investigated various absorption dose in nitrogen atmospheres at room temperature. The dynamic mechanical and thermal properties of the irradiated epoxy acrylate resins were characterized using dynamic mechanical analysis (DMA) and thermogravimetric analyzer (TGA). And the tensile and flexural strength were measured by an universal tensile machine (UTM).

Synthesis and Properties of Photocurable Epoxy Modified Acrylates Using Half-Ester Acrylates (하프-에스터 아크릴레이트를 이용한 광경화형 에폭시 변성 아크렐레이트의 합성과 물성)

  • 김동국;임진규;김우근;허정림
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.531-537
    • /
    • 2004
  • Various half-ester acrylates were prepared from anhydrides and 2-hydroxyethyl acrylate. Photocurable epoxy modified acrylates were prepared from synthesized half-ester acrylate and neopentylglycol diglycidylether. Physical properties such as hardness, yellowing, tensile strength and elongation were tested and compared as the structure of oligomer in cured-film differs. It was found that viscosity of neopentylglycol diglycidylether-hexahydrophthalic anhydride (NP-HA) was highest. Hardness and tensile strength of photocrosslinked neopentylglycol diglycidylether-hexahydrophthalic anhydride were better than those of other photocrosslinted epoxy acrylates. And 5% weight loss temperature of photocrosslinked neopentylglycol diglycidylether-hexahydrophthalic anhydride was higher than those of other photocrosslinked epoxy acrylates. Value of yellow index of photocrosslinked neopentylglycol diglycidyl ether-succinic anhydride (NP-SA) was lower than the other products.

Effect of Monomer on Crosslinking Properties of Acrylic Pressure-Sensitive Adhesives (아크릴계 점착제의 제조와 가교물성에 대한 모노머의 영향)

  • Kim, Pan Soo;Lee, Won-Ki
    • Journal of Adhesion and Interface
    • /
    • v.17 no.2
    • /
    • pp.56-61
    • /
    • 2016
  • This study was to investigate the effect of main monomer, butyl acrylate instead of 2-ethylhexyl acrylate, of acrylic PSAs on adhesive properties. The copolymers of butyl acrylate, acrylic acid and 2-hydroxyethyl acrylate were synthesized and their adhesive properties were investigated after crosslinking with two different agents. Comparing to 2-hydroxyethyl acrylate-based one which has branch-like side groups, butyl acrylate-based PSA with linear side groups show poor adhesive properties. In case of crosslinking agent, epoxy-typed agent than isocyanate-typed one showed better properties than isocyanate-typed one because epoxy-typed agent has more crosslinking sites and produces more flexible bonds, ester and ether, than isocynate-typed one. Most adhesive properties of PSAs were increased with acid content.

Thermal Stability and Surface Hardnes of UV-curable Epoxy Acrylate Coatings for Wooden Flooring (마루바닥재용 자외선 경화형 에폭시 아크릴레이트 도료의 열안정성과 표면경도)

  • Hwang, Hyeon-Deuk;Choi, Jae-Hoon;Moon, Je-Ik;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.121-129
    • /
    • 2008
  • Environmental friendly UV-curable coatings, having excellent hardness, gloss, mar and chemical resistance, are commonly used for the wooden flooring coatings. Especially epoxy acrylate oligomers are chosen for the wooden flooring coatings, due to their thermal stability and fast curing. In this study, we investigated the effect of the acrylate functionality on the thermal stability and surface hardness. The thermal degradations of monomers, oligomer, photoinitiator and formulated coatings with different acrylate functionality were measured using a thermogravimetric analysis (TGA). And the surface hardness was also measured with a pendulum hardness tester to compare relationship between the thermal stability and the physical property. The cured coatings became thermally stable by crosslinking during UV-curing. Both the thermal stability and surface hardness of cured coatings were improved with increasing acrylate functionality.

Synthesis of UV Curable 4,4'-Thiodibenzenethiol-based Epoxy Acrylate and Their Refractive Index Behavior (4,4'-Thiodibenzenethiol을 이용한 광경화형 에폭시 아크릴레이트 합성과 굴절률에 관한 연구)

  • Baek, Seung-Suk;Lee, Sang Won;Hwang, Seok-Ho
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.121-126
    • /
    • 2013
  • UV-curable high refractive index di-functional epoxy acrylate, 4,4'-thiodibenzenethiol diglycidyl ether diacrylate, was synthesized from acrylic acid and 4,4'-thiodibenzenethiol diglycidyl ether that was obtained by reacting 4,4'-thiodibenzenethiol and epichlorohydrin using a direct method (Taffy process). Its chemical structure was identified by $^1H$ NMR and FTIR. After its dilution with a reactive diluent, 2-phenoxythiol ethyl acrylate as 5, 10, 15, 20, and 30 wt% content, the relationship between their viscosity and refractive index was investigated. Their degree of cure decreased with increasing the amount of reactive diluent, and the refractive index of UV-cured film increased with increasing the degree of cure.

Structural and Physical Properties of Sealant Paste Prepared by Silica/Polymer Composites (실리카/고분자 복합체를 이용한 실란트 페이스트의 구조 및 물리적 특성)

  • Yoon, Jong-Kuk;Park, Jung-Il;Koo, Kyung-Wan;Jang, Young-Sil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.916-921
    • /
    • 2012
  • Sealant paste with silica immersed in cross-linked epoxy-acrylate polymer resin was prepared by thermal and UV curing process. The curing mechanism of polymer resin resulted from 2 functional groups of epoxy and acrylic structure. The properties of microstructure, thermal conductivity and mechanical strength were investigated for its various applications. The adhesion strength is increased by increasing the thermal curing time until 15 minutes, and curing efficiency is saturated over 20 minutes. The increase rate per day of pot life and viscosity is 4.8%, indicating it has excellent storage stability. It is found that the formulation of silica pastes can be applied to heavy industries, building materials, display and various industries.

Synthesis and Characterization of UV-curable Aliphatic Epoxy Acrylate (자외선 경화형 지방족 에폭시 아크릴레이트의 합성 및 특성분석)

  • Kim, Young Chul;Lee, Byung-Hoon
    • Journal of Adhesion and Interface
    • /
    • v.10 no.4
    • /
    • pp.191-198
    • /
    • 2009
  • UV-curable aliphatic epoxy acrylates were prepared by the reaction of glycerol diglycidyl ether (GDE) with 2-carboxyethyl acrylate (2-CEA) or 2-hydroxyethyl acrylate (2-HEA). The structures of the epoxy acrylates were characterized by FT-IR, $^1H$-NMR, and $^{13}C$-NMR and the yield was obtained by prep-LC. The UV- and the thermal-curing behaviors of the product were investigated using photo-DSC and DSC, respectively. The reactivity of 2-CEA was higher than 2-HEA and the yield of the product (GEA-C) which was prepared using 2-CEA was about 83%. The maximum UV-curing time ($T_{max}$) of the GEA-C contained non-reactive components and by-product was about 10 seconds. The GEA-C showed low color difference (${\Delta}E^*$), low viscosity, and good thermal stability - its value was 2.51, 192 cps, and $299^{\circ}C$ (at 5% weight loss), respectively. The activation energies ($E_a$) of thermal-curing reaction calculated from Kissinger and Ozawa-Flynn-Wall method were 91~92 kJ/mol.

  • PDF

Mechanical Characteristics of CF Laminated Prepreg with UV-thermal Dual Curable Epoxy Resin (광·열경화형 수지를 이용한 탄소섬유 프리프레그의 물리적 특성)

  • Sim, Ji-hyun;Kim, Ji-hye;Park, Sung-min;Koo, Kwang-hoe;Jang, Key-wook;Bae, Jin-seok
    • Textile Coloration and Finishing
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • An issue of major concern in the utilization of laminated composites based epoxy resin is associated with the occurrence of delaminations or interlaminar cracks, which may be related to manufacturing defects or are induced in service by low-velocity impacts. A strong interfacial filament/brittle epoxy resin bonding can, however, be combined with the high fracture toughness of weak interfacial bonding, when the filaments are arranged to have alternate sections of shear stress. To improve this drawback of the epoxy resin, UV-thermal dual curable resin were developed. This paper presents UV-thermal dual curable resin which were prepared using epoxy acrylate oligomer, photoinitiators, a thermal-curing agent and thermoset epoxy resin. The UV curing behaviors and characteristics of UV-thermal dual curable epoxy resin were investigated using Photo-DSC, DMA and FTIR-ATR spectroscopy. The mechanical properties of UV-thermal dual curable epoxy resin impregnated CF prepreg by UV curable resin content were measured with Tensile, Flextural, ILSS and Sharpy impact test. The obtained results showed that UV curable resin content improves the epoxy toughness.