• Title/Summary/Keyword: Equipment Cluster

Search Result 75, Processing Time 0.039 seconds

Throughput Analysis for Dual Blade Robot Cluster Tool (듀얼블레이드 로봇 클러스터툴의 생산성 분석)

  • Ryu, Sun-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1240-1245
    • /
    • 2009
  • The throughput characteristics of the cluster tool with dual blade robot are analyzed. Using equipment's cycle time chart of the equipment, simple analytic form of the throughput is derived. Then, several important throughput characteristics are analyzed by the throughput formula. First, utilization of the process chamber and the robot are maximized by assigning the equipment to the process whose processing time is near the critical process time. Second, rule for selecting optimal number of process chambers is suggested. It is desirable to select a single process chamber plus a single robot structure for relatively short time process and multi process chambers plus a single robot, namely cluster tool for relatively long time process. Third, throughput variation between equipments due to the wafer transfer time variation is analyzed, especially for the process whose processing time is less than critical process time. And the throughput and the wafer transfer time of the equipments in our fabrication line are measured and compared to the analysis.

A Case Study for Modeling and Simulation Analysis of the In-Line EFEM Cluster Tool Architecture (인라인 EFEM 클러스터 장비 아키텍처의 모델링 및 분석 사례 연구)

  • Han, Yong-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.41-50
    • /
    • 2012
  • In this study we first explain details of the semiconductor manufacturing processes and cluster tools. Then we discuss the problems in current fab layout and cluster tool architecture. As a solution to these problems, we propose the ILE (In-Line EFEM) architecture in which wafer movements are conducted through interconnected EFEMs (Equipment Front End Modules) instead of AMHS (Automated Material Handling System). Then we model the pilot ILE system using discrete event simulation and analyze the cycle time. Finally we compare three different scenarios of equipment layout in the ILE system in terms of cycle time.

A study on the Wonju Medical Equipment Industry Cluster (원주의료기기산업 클러스터의 형성과정에 관한 연구)

  • Lee, Woo-Chun;Yoon, Hyung-Ro
    • Journal of the Korean Academic Society of Industrial Cluster
    • /
    • v.1 no.1
    • /
    • pp.67-86
    • /
    • 2007
  • Wonju Medical Equipment Industry, despite of its short history, poor sales and weak manpower and so on, have shown remarkable outcomes in a relatively short period. At the end of 2007, totally 79 enterprises (only 4.6% of whole enterprises in Korea) made 10% of the nationwide production and 15% of the nationwide exports with an annual average growth rate of 66.7%, contributing domestic medical equipment industry tremendously. In addition, many leading medical equipment enterprises in various fields already moved or plan to move to Wonju, accelerating Wonju Medical Equipment Cluster. Wonju Medical Equipment Industry Cluster now enters into the growth stage, getting out of the initial business setup stage. Especially, the nomination of Wonju cluster project from the government accelerates networking (e.g. the development of the universal parts, the establishment of the mutual collaboration model among enterprises, and the mutual marketing), making a rapid growth in Wonju Medical Equipment Industry. Wonju Medical Equipment Industry Cluster revealed positive outcomes despite of the weakness in investment size and infra-structure comparing with the other medical industry cluster in the advanced country, while many domestic enterprises pursued their own growth models and thus failed to promote the international competitive power. Wonju Medical Equipment Industry has been developed rapidly. However, there are many challenging problems to support enterprises: small R&D investment and thus weak technology power, difficulties in recruiting R&D engineers, and poor marketing capabilities, financial infrastructure & policies, and network architecture. In order to develop a world-competitive medical equipment industry cluster at Wonju, the complement of infrastructures, the technology innovation, the mutual marketing, and the network expansion to support enterprises are further required. Wonju' s experiences in developing medical equipment industry so far suggest that our own flexible cluster model considering the industry structure and maturity for different regions should be developed, and specific action plans from the local and central governments based on their systematic strategies for industry development should be implemented in order to build world-competitive industry clusters in Korea.

  • PDF

A Study on the Development of Oxygen Cluster Ion Generator for Sterilization of Bio Clean Room(BCR) (Bio Clean Room(BCR)의 멸균을 위한 산소 클러스터이온 발생 장치 개발에 관한 연구)

  • Park, Dong-Il;Chung, Kwang-Seop;Kim, Young-Il;Kim, Sung-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • Bio Clean Room(BCR) and pharmaceutical product manufacturing facilities require careful assessment of many factors, including HVAC, controls, room finishes, process equipment, room operations, and utilities. Flow of equipment, personnel, and product must also be considered along with system flexibility, redundancy, and maintenance shutdown strategies. It is important to involve designers, operators, commissioning staff, quality control, maintenance, constructors, validation personnel, and the production representative during the conceptual stage of design. Critical variables for room environment and types of controls vary greatly with the clean space's intended purpose. It is particularly important to determine critical parameters with quality assurance to set limits and safety factors for temperature, humidity, room pressure, and other control requirements. In this paper, oxygen cluster ion equipment was utilized in order to enhance the indoor air quality and to prevent the airborne infection of ward in hospital. Moreover, the performance test of the equipment was also performed in order to develop the optimal sterilization system of BCR using the equipment.

Interference Management with Block Diagonalization for Macro/Femto Coexisting Networks

  • Jang, Uk;Cho, Kee-Seong;Ryu, Won;Lee, Ho-Jin
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.297-307
    • /
    • 2012
  • A femtocell is a small cellular base station, typically designed for use in a home or small business. The random deployment of a femtocell has a critical effect on the performance of a macrocell network due to co-channel interference. Utilizing the advantage of a multiple-input multiple-output system, each femto base station (FBS) is able to form a cluster and generates a precoding matrix, which is a modified version of conventional single-cell block diagonalization, in a cooperative manner. Since interference from clustered-FBSs located at the nearby macro user equipment (MUE) is the dominant interference contributor to the coexisting networks, each cluster generates a precoding matrix considering the effects of interference on nearby MUEs. Through simulation, we verify that the proposed algorithm shows better performance respective to both MUE and femto user equipment, in terms of capacity.

Reclassification of the vulnerability group of wartime equipment (군집분석을 이용한 전시장비의 취약성 그룹 재분류)

  • Lee, Hanwoo;Kim, Suhwan;Joo, Kyungsik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.581-592
    • /
    • 2015
  • In the GORRAM, the estimation of resource requirements for wartime equipment is based on the ELCON of the USA. The number of vulnerability groups of ELCON are 22, but unfortunately it is hard to determine how the 22 groups are classified. Thus, in this research we collected 505 types of basic items used in wartime and classified those items into new vulnerability groups using AHP and cluster analysis methods. We selected 11 variables through AHP to classify those items with cluster analysis. Next, we decided the number of vulnerability groups through hierarchical clustering and then we classified 505 types of basic items into the new vulnerability groups through K-means clustering.This paper presents new vulnerability groups of 505 types of basic items fitted to Korean weapon systems. Furthermore, our approach can be applied to a new weapon system which needs to be classified into a vulnerability group. We believe that our approach will provide practitioners in the military with a reliable and rational method for classifying wartime equipment and thus consequentially predict the exact estimation of resource requirements in wartime.

A Study on the Establishment of Compilation Strategy Way of "Power equipment II" Textbook by 7th Technical High School Curriculum (7차 교육과정에 따른 "전력 설비 II" 교과서의 편찬 방향 설정에 관한 연구)

  • Park, Doo-Gie;Jo, Dong-Heon;No, Myung-Cheol;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.119-122
    • /
    • 2003
  • The purpose of this study is to find problems of "Electricity equipmentand" and "Electricity practic II" tectbook applied in 6th Technical High School Curriculum and to make direction of "Power equipment II" textbook applied in 7th Technical High School Curriculum. The method of this study is questionnaire survey. 120 teachers of 40 schools were selected by cluster sampling method. The main findings of this study are as follow. 1) We should make the composition of textbook easy. 2)The illustration, photograph and drawing of textbook are fitted well. 3) "power equipment II" textbook applied in 7th Technical High School Curriculum would contented follows : lighting equipment, elevator equipment, broadcasting equipment, interphone equipment.

  • PDF