• Title/Summary/Keyword: Equipment Durability

Search Result 159, Processing Time 0.052 seconds

Vibration Durability Analysis for Components of Construction Equipment Industry (건설중장비 부품의 진동내구해석)

  • Kim, Sunghwan;Ham, Jeonghoon;Kang, Hyunseok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.509-513
    • /
    • 2013
  • There are so many types of construction equipment. Excavator is one of typical construction equipment which is working under the tough and severe environments. It's important for engineers to design CE components by the vibration durability point of view. Traditionally, two typical vibration durability methods to verify the durability of components. The first is experimental method which is using the vibration durability test bench. But experimental approach on vibration durability is needed a lot of cost and time. The second is analytical method which is using the vibration durability analysis such as Dirlik, Stainberg, Lalanne and others methodologies. The one of main advantages on vibration durability analysis can reduce the cost and time. We present a vibration durability analysis process and methodology on the guardrail system in excavator.

  • PDF

A Parametric Study for the Construction of Durability Test Track of a Wheel Type Vehicle (휠 차량의 내구 시험장 조성을 위한 매개변수 연구)

  • 송세철;김형근;박태건;김동준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.73-79
    • /
    • 1998
  • For the design and development of the wheel type excavator, the dynamic effects of travelling on the performance of the equipment should be first analyzed and conside- red in the initial design stage. In order to test the durability of the equipment in a short period, th travelling test should be performed over accelerated durability test tracks. which is more severe than general field roads such as city road, paved road, unpaved road and rough road. In this paper, a parametric study is performed in order to determine important design parameters of durability test track of a wheel type excavator. A rigid body model is developed using DADS and dynamic analysis is performed for the equipment travelling over several test roads with different severity. A comparison of test and analysis results is also presented.

  • PDF

Development of an Unmanned Test System Based on Forklift for Mast Operation Durability (지게차 마스트 작동내구를 위한 실차 기반 무인시험장치 개발)

  • Cho, Jae-Hong;Na, Seon-Jun;Kim, Min-Seok;Park, Myeong-Kwan
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.70-76
    • /
    • 2022
  • In this paper, we develops an unmanned test system for the purpose of realizing an actual forklift-based test-bed for the operation durability of the forklift mast. First, two robot actuators were applied to the lever to replace lever manipulation of the operator. For detecting the height of the fork and the tilt angle of the mast, the laser displacement sensor and the inclinometer were installed to the forklift. Next, the embedded control system was used to control the robot actuator with reference to test mode. Experimental evaluation verified that developed test system was effective and practical for the viewpoint of the repeatability of the test mode.

Durability Evaluation on Doorstep Equipments Used for Low and High Level Platforms at Railway Vehicle (철도차량의 저상 및 고상 승강장 겸용 승강문 스텝에 대한 내구성 평가)

  • Kim, Chul-Su;Park, Min-Heung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3889-3894
    • /
    • 2012
  • The platform of railroad station for domestic passenger train has been operated at two categories like the platforms if low level(500mm, mainline) and high level(1,135mm, metropolitan subway line). To operate both metropolitan subway line and mainline railroad safely, it is essential to develop the doorstep equipment of railway vehicle regardless of low and high level platforms. On the other hand, the domestic test standard at durability and reliability of doorstep equipment has not been existed until now. This study aims at the development on doorstep equipment of telescopic sliding type for low and high level platforms. Durability analysis with VPD(Virtual Product Development) techniques are performed and the durability standard & qualification life through the rig test during no failure test time is examined in accordance with reliability qualification test.

An Experimental Study on Prediction of Unit-Water Content of Cement Paste Using Ultrasonic Equipment (초음파 장비를 활용한 시멘트 페이스트 단위수량 예측에 관한 실험적 연구)

  • Cho, Yang-Je;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.33-34
    • /
    • 2020
  • Unit-water content is an element directly related to durability and unit-water content of concrete used at construction site has a great effect on the durability of construction structure. Many methods are being discussed for more convenient and accurate measurements of unit-water content. Therefore, an experimental study was conducted on the prediction of unit-water content using ultrasonic equipment. Depending on the amount of cement in cement paste, the speed of ultrasonic waves varies and the experiment will be carried out using the same reception sensitivity in the future.

  • PDF

A Study on Endurance Improvement of Electrical Equipment according to Vibration Environment (진동환경에 따른 전기설비의 내구성 향상에 관한 연구)

  • Park, Keun-Seok;Shim, Jae-Myung;Lee, Dae-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1146-1151
    • /
    • 2014
  • The equipment in ships and railway vehicles are continuously exposed to vibration, and its durability is very important. Therefore, consumers require the verification of the performance of equipment via standardized tests under the given environments to improve and stabilize the performance. In this study, a durability improvement and stabilization plan was proposed, which included the exploratory vibration test, variable frequency test and endurance test for the electrical equipment according to the vibration environment. It is expected that this study results will improve the technological competitive power of the ship and railway-related manufacturers and contribute to the equipment development and export.

Development of a Workload Index for Monitoring Durability Test of an Excavator (굴착기 내구시험 모니터링을 위한 작업부하 지표 개발)

  • Cho, Jae-Hong;Na, Seon-Jun;Kim, Min-Seok;Park, Myeong-Kwan
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.29-35
    • /
    • 2022
  • In this paper, we developed a workload index for monitoring the durability test using operation information of an excavator. First, the acceleration and cylinder pressure were selected as load factors by analyzing operation data. Through load correlation analysis according to each load factor, Root Mean Square (RMS) and Work Load Range (WLR) were respectively derived as a load feature representing mechanical load. In addition, the workload index was used to quantify load features. For applying the workload index to monitoring, a real-time monitoring system consisting of sensors and embedded controller was installed on the excavator and the system was integrated with a remote monitoring environment using a wireless network. Results of load monitoring and analysis verified that the developed workload index was effective from the viewpoint of the relative comparison of the workload.

A Study on Improving the Enhanced Durability of Cylinder Liner according to Cavitation Influence of Combat Equipment Engine (전투장비 엔진의 캐비테이션 영향에 따른 실린더 라이너의 내구성 강화 방안에 관한 연구)

  • Kim, Daeun;Lee, Kijung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.1-8
    • /
    • 2021
  • Cylinder liners used in diesel engines of combat equipment are prone to cavitation due to wet cooling. The damage caused by erosion and corrosion due to cavitation has a fatal effect on the performance and lifespan of a diesel engine. Therefore, a study was conducted to improve the durability of cylinder liners. Two surface treatment techniques were proposed: nitriding and chrome plating. It was observed that the amount of erosion on the surface of nitride-treated cylinder liners was high because the surface-treated part eroded due to its weak impact resistance against the bubble explosion generated by cavitation. In contrast, the chrome-plated cylinder liner had a lower amount of erosion among the specimens subjected to the accelerated test. These results verified that the resistance of chrome-plated liners against cavitation is high. Therefore, it can withstand the impact of bubble explosion. If the chrome plating thickness is set with reference to the KS standard, an exceptional durability of abrasion, wear resistance, and corrosion resistance can be obtained. If the thickness is set between 120~250㎛, it is expected that the durability of the cylinder liner can be improved. Although a recovery method for corroded cylinder liners is suggested, the proposed method has an inherent risk of crack generation. Therefore, further research is required to solve this problem.

A Study on the Durability Design of a Hydraulic Cylinder for an Excavator (굴삭기 유압실린더의 내구설계 기법에 관한 연구)

  • Kim, Young-Bum;Kim, Pan-Young;Kim, In-Kyu;Kwon, Hak-Soon;Lee, Min-Hee;Park, Jin-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1901-1907
    • /
    • 2010
  • A hydraulic cylinder is a primary component of an excavator and is used for activating attachments such as boom, arm, and bucket. Generally, the cylinder is prone to structural problems such as buckling and fatigue failure caused by cyclic high pressure. Therefore, the safety margin for fatigue, yield, and buckling during the design lifetime should be evaluated at the durability-design stage. The durability design includes basic and detailed stages. In the basic design, the principal dimensions of the rod and tube are determined by considering the working force, speed, and range with respect to yield and buckling. In the detailed design, the dimensions of the rod notch, welds, tube end, gland, orifice, and cushion ring are determined by considering the fatigue safety. We present and discuss the overall procedure for durability design and the related analysis techniques.