• 제목/요약/키워드: Error Analysis

검색결과 9,151건 처리시간 0.036초

철도 사고 및 장애의 인적오류 유형 분석 (An Analysis of Human Error Mode and Type in the Railway Accidents and Incidents)

  • 고종현;정원대;김재환
    • 한국안전학회지
    • /
    • 제22권4호
    • /
    • pp.66-71
    • /
    • 2007
  • Human error is one of the major contributors to the railway accidents or incidents. In order to develop an effective countermeasure to remove or reduce human errors, a systematic analysis should be preferentially performed to identify their causes, characteristics, and types of human error induced in accidents or incidents. This paper introduces a case study for human error analysis of the railway accidents and incidents. For the case study, more than 1,000 domestic railway accidents or incidents that happened during the year of 2004 have been investigated and a detailed error analysis was performed on the selected 90 cases, which were obviously caused by human error. This paper presents a classification structure for human error analysis, and summarizes the analysis results such as causes of the events, error modes and types, related worker, and task type.

원자력발전소 비상운전시의 운전원 인지오류 예측 지원체계의 개발 (A Framework for the Support of Predictive Cognitive Error Analysis of Emergency Tasks in Nuclear Power Plants)

  • 김재환;정원대
    • 한국안전학회지
    • /
    • 제16권3호
    • /
    • pp.117-124
    • /
    • 2001
  • This paper introduces m analysis framework and procedure for the support of the cognitive error analysis of emergency tasks in nuclear poler plants. The framework provides a new perspective in the utilization of influencing factors into error prediction. The framework can be characterized by two features. First, influencing factors that affect the occurrence of human error me classified into three groups, i.e., task characteristic factors(TCF), situation factors(SF), and performance assisting factors(PAF). This classification aims to support error prediction from the viewpoint of assessing the adequacy of PAF under given TCF and SF. Second, the assessment of influencing factors is made by each cognitive function. Through this, influencing factors assessment and error prediction can be made in an integrative way according to each cognitive function. In addition, it helps analysts identify vulnerable cognitive functions and error factors, and obtain specific nor reduction strategies. The proposed framework was applied to the error analysis of the bleed and feed operation of nuclear emergency tasks.

  • PDF

회귀분석을 이용한 열변형 오차 모델링에 관한 연구 (Research on the thermal deformation model ins using by regression analysis)

  • 김희술;고태조;김선호;김형식;정종운
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.47-52
    • /
    • 2002
  • There are many factors in machine tool error. These are thermal deformation, geometric error, machine's part assembly error, error caused by tool bending. Among them thermal error is 70% of total error of machine tool . Prediction of thermal error is very difficult. because of nonlinear tendency of machine tool deformation. In this study, we tried thermal error prediction by using multi regression analysis.

  • PDF

원자력발전소 비상운전 직무의 인간오류분석 및 평가 방법 AGAPE-ET의 개발 (AGAPE-ET: A Predictive Human Error Analysis Methodology for Emergency Tasks in Nuclear Power Plants)

  • 김재환;정원대
    • 한국안전학회지
    • /
    • 제18권2호
    • /
    • pp.104-118
    • /
    • 2003
  • It has been criticized that conventional human reliability analysis (HRA) methodologies for probabilistic safety assessment (PSA) have been focused on the quantification of human error probability (HEP) without detailed analysis of human cognitive processes such as situation assessment or decision-making which are crticial to successful response to emergency situations. This paper introduces a new human reliability analysis (HRA) methodology, AGAPE-ET (A guidance And Procedure for Human Error Analysis for Emergency Tasks), focused on the qualitative error analysis of emergency tasks from the viewpoint of the performance of human cognitive function. The AGAPE-ET method is based on the simplified cognitive model and a taxonomy of influencing factors. By each cognitive function, error causes or error-likely situations have been identified considering the characteristics of the performance of each cognitive function and influencing mechanism of PIFs on the cognitive function. Then, overall human error analysis process is designed considering the cognitive demand of the required task. The application to an emergency task shows that the proposed method is useful to identify task vulnerabilities associated with the performance of emergency tasks.

A modified Zienkiewicz-Zhu error estimator

  • Stephen, D.B.;Steven, G.P.
    • Structural Engineering and Mechanics
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 1996
  • A new error measure for a static finite element analysis is proposed. This error measure is a modification to the Zienkiewicz and Zhu energy norm. The new error estimator is a global error measure for the analysis and is independent of finite element model size and internal stresses, hence it is readily transportable to other error calculations. It is shown in this paper the the new error estimator also produces conservative error measurements, making it a suitable procedure to adopt in commerical packages.

Error Model and Accuracy Analysis of a Cubic Parallel Device

  • Lim, Seung-Reung;Park, Woo-Chun;Song, Jae-Bok;Daehie Hong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.75-80
    • /
    • 2001
  • An error analysis is very important to estimate performance of a precision machine. This study proposes an error analysis for a new parallel device, a cubic parallel device. The cubic parallel manipulator has error sources including upper and lower universal joint errors due to the directional changes in the link and actuation errors. The maximum errors of the end effector are affected by the axial direction changes of each links and the clearances of the universal joints when the parallel manipulator is moving along a path. It is found that the changes of errors mostly occur at the positions where the directions of exerting link forces shift. The error analysis is based on an error model formed from the relation between the universal point errors and the end-effector accuracy. The analysis method can be also used in predicting the accuracy of other parallel devices.

  • PDF

수직형 선반의 평면 오차 민감도 분석 및 신뢰도 평가 (Sensitivity Analysis and Confidence Evaluation for Planar Errors of a Vertical Turning Center)

  • 여규환;양승환
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.67-75
    • /
    • 1998
  • Geometric and thermal errors are key contributors to the errors of a computer numerically controlled turning center. A planar error synthesis model is obtained by synthesizing 11 geometric and thermal error components of a turning center with homogeneous coordinate transformation method. This paper shows the sensitivity analysis on the temperature change, the confidence evaluation on the uncertainty Of measurement systems, and the error contribution analysis from the planar error synthesis model. Planar error in the z direction was very sensitive to the temperature change. and planar errors in the x and z directions were not affected by the uncertainty of measurement systems. The error contribution analysis ,which is applicable to designing a new turning center, was helpful to find the large error components which affect planar errors of the turning center.

  • PDF

육면형 병렬기구에서의 유니버설 조인트 오차의 영향 (Effect of U-Joint Errors Analysis for a Cubic Parallel Device)

  • 임승룡;최우천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.789-794
    • /
    • 2000
  • This study proposes an error analysis for a cubic parallel device. There are many sources of errors in the device. An error analysis is presented based on an error model formed from the relation between the universal joint error of the cubic parallel manipulator and the end effector accuracy. The analysis shows that the method can be used in evaluating the accuracy of a parallel device.

  • PDF

국내 헬리콥터 조종사 인적오류 사고 분류 및 분석 (Classification and Analysis of Human Error Accidents of Helicopter Pilots in Korea)

  • 유태정;권영국;송병흠
    • 한국항공운항학회지
    • /
    • 제28권4호
    • /
    • pp.21-31
    • /
    • 2020
  • There are two to three helicopter accidents every year in Korea, representing 5.7 deaths per 100,000 flights. In this study, an analysis was conducted on helicopter accidents that occurred in Korea from 2005 to 2017. The accident analysis was based on the aircraft accident and incident report published by the Aircraft and Railway Accident Investigation Board. This Research analyzed the characteristics of accidents occurring in Korea caused by human error by pilots. Accident analysis was done by classifying the organization, flight mission, aircraft class, flight stage, accident cause, etc. Pilot's huan error was classified as Skill-based error, decision error and perceptual error in accordance with the HFACS taxonomy. The accidents caused by pilot's human error were classified into five categories: powerlines collision, loss of control, fuel exhaustion, unstable approach to reservoir, and elimination of tail rotor.

국내 철도사고 및 운행장애의 인적오류 유형 분석 (Human Error Analysis on the Domestic Railway Accident and Incident)

  • 고종현;정원대;김재환;곽상록
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1529-1535
    • /
    • 2006
  • Human error is one of the major contributors to the railway accidents or incidents. In order to develop an effective countermeasure to remove or reduce human errors, a systematic analysis should be preferentially performed to identify their causes, characteristics, and types of human error induced in accidents or incidents. This paper introduces a case study for human error analysis of the railway accidents and incidents. For the case study, more than 1,000 domestic railway accidents or incidents that happened during the year of 2004 have been investigated and a detailed error analysis was performed on the selected 90 cases, which were obviously caused by human error. This paper presents a classification structure for human error analysis, and summarizes the analysis results such as causes of the events, error modes and types, related worker, and task type.

  • PDF