• Title, Summary, Keyword: Etch profile

Search Result 141, Processing Time 0.03 seconds

Study on the Etching Profile and Etch Rate of $SiO_2/Si_3N_4$ by Ar Gas Addition to $CF_4/O_2$ Plasma ($CF_4/O_2$ Plasma에 Ar첨가에 따른 $SiO_2/Si_3N_4$ 에칭 특성 변화)

  • Kim, Boom-Soo;Kang, Tae-Yoon;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.127-128
    • /
    • 2009
  • CCP방식의 식각에 있어서 CF4/O2 Plasma Etch에 Ar을 첨가함으로써 Etch특성이 어떻게 변화하는지를 조사하였다. FE-SEM를 이용하여 Etch Profile를 측정하였다. 또한 Elipsometer와 Nanospec을 이용하여 Etch rate를 측정하였다. Ar의 비율이 전체의 47%정도를 차지하였을 때까지 Etch Profile이 향상되었다가 그이후로는 다시 감소하는 것을 볼 수 있었다. Ar을 첨가할수록 etch rate은 계속 향상되었다. Ar을 첨가하는 것은 물리적인 식각으로 반응하여 Etch rate의 향상과 적정량의 Ar을 첨가했을 때 Etch profile이 향상되는 결과를 얻었다.

  • PDF

Optimizing Spacer Dry Etch Process using New Plasma Etchant (New Plasma Etchant를 사용하여 Spacer dry etch 공정의 최적화)

  • Lee, Doo-Sung;Kim, Sang-Yeon;Nam, Chang-Woo;Ko, Dae-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.83-83
    • /
    • 2009
  • We studied about the effect of newly developed etchant for spacer etch process in gate patterning. With the 110nm CMOS technology, first, we changed the gate pattern size and investigated the variation of spacer etch profile according to the difference in gate length. Second, thickness of spacer nitride was changed and effect of etch ant on difference in nitride thickness was observed. In addition to these, spacer etch power was added as test item for variation of etch profile. We investigated the etch profiles with SEM and TEM analysis was used for plasma damage check. With these results we could check the process margins for gate patterning which could hold best performance and choose the condition for best spacer etch profile.

  • PDF

Effect of Hexafluoroisopropanol Addition on Dry Etching of Cu Thin Films Using Organic Material (유기 물질을 사용한 구리박막의 건식 식각에 대한 헥사플루오로이소프로판올 첨가의 영향)

  • Park, Sung Yong;Lim, Eun Teak;Cha, Moon Hwan;Lee, Ji Soo;Chung, Chee Won
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.162-171
    • /
    • 2021
  • Dry etching of copper thin films is performed using high density plasma of ethylenediamine (EDA)/hexafluoroisopropanol (HFIP)/Ar gas mixture. The etch rates, etch selectivities and etch profiles of the copper thin films are improved by adding HFIP to EDA/Ar gas. As the EDA/HFIP concentration in EDA/HFIP/Ar increases, the etch rate of copper thin films decreases, whereas the etch profile is improved. In the EDA/HFIP/Ar gas mixture, the optimal ratio of EDA to HFIP is investigated. In addition, the etch parameters including ICP source power, dc-bias voltage, process pressure are varied to examine the etch characteristics. Optical emission spectroscopy results show that among all species, [CH], [CN] and [H] are the main species in the EDA/HFIP/Ar plasma. The X-ray photoelectron spectroscopy results indicate the formation of CuCN compound and C-N-H-containing polymers during the etching process, leading to a good etch profile. Finally, anisotropic etch profiles of the copper thin films patterned with 150 nm scale are obtained in EDA/HFIP/Ar gas mixture.

Wavelet Characterization of Profile Uniformity Using Neural Network

  • Park, Won-Sun;Lim, Myo-Teak;Kim, Byungwhan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.46.5-46
    • /
    • 2002
  • As device dimension shrinks down to sub 100nm, it is increasingly important to monitor plasma states. Plasma etching is a key means to fine patterning of thin films. Many parameters are involved in etching and each parameter has different impact on process performances, including etch rate and profile. The uniformity of etch responses should be maintained high to improve device yield and throughput. The uniformity can be measured on any etch response. The most difficulty arises when attempting to characterize etched profile. Conventionally, the profile has been estimated by measuring the slope or angle of etched pattern. One critical drawback in this measurement is that this is unable to cap...

  • PDF

Improvement of SiO$_2$Etching Characteristics by E-ICP (SiO$_2$식각 특성 개선을 위한 E-ICP와 ICP 식각 비교)

  • 정재성;김진우;라상호;오범환;박세근
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.887-890
    • /
    • 1999
  • The etch characteristics of E-ICP and ICP are compared for the improvement of SiO$_2$ etch Process. Etch rate and etch pattern profile are measured by $\alpha$ -step surface profiler and SEM, respectively. The E-ICP provides improved characteristics on etch rate and surface profile in comparison to ICP process.

  • PDF

Genetic Control of Learning and Prediction: Application to Modeling of Plasma Etch Process Data (학습과 예측의 유전 제어: 플라즈마 식각공정 데이터 모델링에의 응용)

  • Uh, Hyung-Soo;Gwak, Kwan-Woong;Kim, Byung-Whan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.315-319
    • /
    • 2007
  • A technique to model plasma processes was presented. This was accomplished by combining the backpropagation neural network (BPNN) and genetic algorithm (GA). Particularly, the GA was used to optimize five training factor effects by balancing the training and test errors. The technique was evaluated with the plasma etch data, characterized by a face-centered Box Wilson experiment. The etch outputs modeled include Al etch rate, AI selectivity, DC bias, and silica profile angle. Scanning electron microscope was used to quantify the etch outputs. For comparison, the etch outputs were modeled in a conventional fashion. GABPNN models demonstrated a considerable improvement of more than 25% for all etch outputs only but he DC bias. About 40% improvements were even achieved for the profile angle and AI etch rate. The improvements demonstrate that the presented technique is effective to improving BPNN prediction performance.

Dry Etching of Polysilicon in Hbr/O2 Inductively Coupled Plasmas (Hbr/O2 유도결합 플라즈마를 이용한 폴리실리콘 건식식각)

  • 범성진;송오성;이혜영;김종준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Dry etch characteristics of polysilicon with HBr/O$_2$ inductively coupled plasma (ICP) have been investigated. We determined etch late, uniformity, etch profiles, and selectivity with analyzing the cross-sectional scanning electron microscopy images obtained from top, center, bottom, right, and left positions. The etch rate of polysilicon was about 2500 $\AA$/min, which meets with the mass production for devices. The wafer level etch uniformity was within $\pm$5 %. Etch profile showed 90$^{\circ}$ slopes without notches. The selectivity over photoresist was between 2:1∼4.5:1, depending on $O_2$ flow rate. The HBr-ICP etching showed higher PR selectivity, and sharper profile than the conventional Cl$_2$-RIE.

Etching Characteristics of Fine Ta Patterns with Electron Cyclotron Resonance Chlorine Plasma

  • Kim, Sang-Hoon;Woo, Sang-Gyun;Ahn, Jin-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • /
    • pp.97-102
    • /
    • 2000
  • We have studied etching characteristic of Ta film using Electron Cyclotron Resonance (ECR) etcher system. Microwave source power. RF bias power. and working pressure were varied to investigate the etch Profile. And we have used two step etching method to acquire the goWe have studied etching characteristic of Ta film using Electron Cyclotron Resonance (ECR) etcher system. Microwave source power. RF bias power. and working pressure were varied to investigate the etch Profile. And we have used two step etching method to acquire the good etch profile preventing the microloading effect.od etch profile preventing the microloading effect.

  • PDF

A study on the silicon shallow trench etch process for STI using inductively coupled $Cl_2$ and TEX>$HBr/Cl_2$ plasmas (유도결합 $Cl_2$$HBr/Cl_2$ 플라즈마를 이용한 STI용 실리콘 Shallow trench 식각공정에 관한 연구)

  • 이주훈;이영준;김현수;이주욱;이정용;염근영
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.267-274
    • /
    • 1997
  • Silicon shallow trenches applied to the STI (Shallow Trench Isolation) of integrated circuits were etched using inductively coupled $Cl_2$ and HBr/$Cl_2$ plasmas and the effects of process parameters on the etch profiles of silicon trenches and the physical damages on the trench sidewall and bottom were investigated. The increase of inductive power and bias voltage in $Cl_2$ and HBr/$Cl_2$ plasmas increased polysilicon etch rates in general, but reduced the etch selectivities over nitride. In case of $Cl_2$ plasma, low inductive power and high bias voltage showed an anisotropic trench etch profile, and also the addition of oxygen or nitrogen to chlorine increased the etch anisotropy. The use of pure HBr showed a positively angled etch profile and the addition of $Cl_2$ to HBr improved the etch profile more anisotropically. HRTEM study showed physical defects formed on the silicon trench surfaces etched in $Cl_2/N_2$ or HBr/ $Cl_2$ plasmas.

  • PDF

Effects of Ar Addition on the Etch Rates and Etch Profiles of Si Substrates During the Bosch Process (Bosch 공정에서 Si 식각속도와 식각프로파일에 대한 Ar 첨가의 영향)

  • Ji, Jung Min;Cho, Sung-Woon;Kim, Chang-Koo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.755-759
    • /
    • 2013
  • The etch rate and etch profile of Si was investigated when Ar was added to an $SF_6$ plasma in the etch step of the Bosch process. A Si substrate was etched with the Bosch process using $SF_6$ and $SF_6$/Ar plasmas, respectively, in the etch step to analyze the effects of Ar addition on the etch characteristics of Si. When the Ar flow rate in the $SF_6$ plasma was increased, the etch rate of the Si substrate increased, had a maximum at 20% of the Ar flow rate, and then decreased. This was because the addition of Ar to the $SF_6$ plasma in the etch step of the Bosch process resulted in the bombardment of Ar ions on the Si substrate. This enhanced the chemical reactions (thus etch rates) between F radicals and Si as well as led to sputtering of Si particles. Consequently, the etch rate was higher more than 10% and the etch profile was more anisotropic when the Si substrate was etched with the Bosch process using a $SF_6$/Ar (20% of Ar flow rate) plasma during the etch step. This work revealed a feasibility to improve the etch rate and anisotropic etch profile of Si performed with the Bosch process.