• Title/Summary/Keyword: Etch rate

Search Result 601, Processing Time 0.03 seconds

Dry Etching of Polysilicon in Hbr/O2 Inductively Coupled Plasmas (Hbr/O2 유도결합 플라즈마를 이용한 폴리실리콘 건식식각)

  • 범성진;송오성;이혜영;김종준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Dry etch characteristics of polysilicon with HBr/O$_2$ inductively coupled plasma (ICP) have been investigated. We determined etch late, uniformity, etch profiles, and selectivity with analyzing the cross-sectional scanning electron microscopy images obtained from top, center, bottom, right, and left positions. The etch rate of polysilicon was about 2500 $\AA$/min, which meets with the mass production for devices. The wafer level etch uniformity was within $\pm$5 %. Etch profile showed 90$^{\circ}$ slopes without notches. The selectivity over photoresist was between 2:1∼4.5:1, depending on $O_2$ flow rate. The HBr-ICP etching showed higher PR selectivity, and sharper profile than the conventional Cl$_2$-RIE.

Oxide etching characteristics of Enhanced Inductively Coupled Plasma (E-ICP에 의한 산화막 식각특성)

  • 조수범;송호영;박세근;오범환
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.298-301
    • /
    • 2000
  • We investigated the etch rate of SiO$_2$ in E-ICP, ICP system and the addition gas (O$_2$H$_2$) effect on SiO$_2$ etch characteristics. In all conditions, E-ICP shows higher etch rate than ICP. Small amount of O$_2$ addition increase F atom and O$\^$*/ concentration. at optimized condition (30% O$_2$ in CF$_4$, 70Hz) E-ICP system shows highest etch rate (about 6000${\AA}$). H$_2$addition in CF$_4$ Plasma make abrupt decrease Si etch rate and moderate decrease SiO$_2$ etch rate.

  • PDF

The Influence of He flow on the Si etching procedure using chlorine gas

  • Kim, J.W.;Park, J.H.;M.Y. Jung;Kim, D.W.;Park, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.65-65
    • /
    • 1999
  • Dry etching technique provides more easy controllability on the etch profile such as anisotropic etching than wet etching process and the results of lots of researches on the characterization of various plasmas or ion beams for semiconductor etching have been reported. Chlorine-based plasmas or chlorine ion beam have been often used to etch several semiconductor materials, in particular Si-based materials. We have studied the effect of He flow rate on the Si and SiO2 dry etching using chlorine-based plasma. Experiments were performed using reactive ion etching system. RF power was 300W. Cl2 gas flow rate was fixed at 58.6 sccm, and the He flow rate was varied from 0 to 120 sccm. Fig. 1 presents the etch depth of si layer versus the etching time at various He flow rate. In case of low He flow rate, the etch rate was measured to be negligible for both Si and SiO2. As the He flow increases over 30% of the total inlet gas flow, the plasma state becomes stable and the etch rate starts to increase. In high Ge flow rate (over 60%), the relation between the etch depth and the time was observed to be nearly linear. Fig. 2 presents the variation of the etch rate depending on the He flow rate. The etch rate increases linearly with He flow rate. The results of this preliminary study show that Cl2/He mixture plasma is good candidate for the controllable si dry etching.

  • PDF

Characteristics of Amorphous Silicon Gate Etching in Cl2/HBr/O2 High Density Plasma (Cl2/HBr/O2 고밀도 플라즈마에서 비정질 실리콘 게이트 식각공정 특성)

  • Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.79-83
    • /
    • 2009
  • In this study, the characteristics of amorphous silicon etching for the formation of gate electrodes have been evaluated at the variation of several process parameters. When total flow rates composed of $Cl_2/HBr/O_2$ gas mixtures increased, the etch rate of amorphous silicon layer increased, but critical dimension (CD) bias was not notably changed regardless of total flow rate. As the amount of HBr in the mixture gas became larger, amorphous silicon etch rate was reduced by the low reactivity of Br species. In the case of increasing oxygen flow rate, etch selectivity was increased due to the reduction of oxide etch rate, enhancing the stability of silicon gate etching process. However, gate electrodes became more sloped according to the increase of oxygen flow rate. Higher source power induced the increase of amorphous silicon etch rate and CD bias, and higher bias power had a tendency to increase the etch rate of amorphous silicon and oxide.

High density plasma etching of novel dielectric thin films: $Ta_{2}O_{5}$ and $(Ba,Sr)TiO_{3}$

  • Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.5
    • /
    • pp.231-237
    • /
    • 2001
  • Etch rates up to 120 nm/min for $Ta_{2}O_{5}$ were achieved in both $SF_{6}/Ar$ and $Cl_{2}/Ar$ discharges. The effect of ultraviolet (UV) light illumination during ICP etching on $Ta_{2}O_{5}$ etch rate in those plasma chemistries was examined and UV illumination was found to produce significant enhancements in $Ta_{2}O_{5}$ etch rates most likely due to photoassisted desorption of the etch products. The effects of ion flux, ion energy, and plasma composition on (Ba, Sr)$TiO_3$ etch rate were examined and maximum etch rate ~90 nm/min was achieved in $Cl_{2}/Ar$ ICP discharges while $CH_{4}/H_{2}/Ar$ chemistry produced extremely low etch rates (${\leq}10\;nm/min$) under all conditions.

  • PDF

Halogen-based Inductive Coupled Plasma에서의 W 식각시 첨가 가스의 효과에 관한 연구

  • 박상덕;이영준;염근영;김상갑;최희환;홍문표
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.41-41
    • /
    • 2003
  • 텅스텐(W)은 높은 thermal stability 와 process compatibility 및 우수한 corrosion r resistance 둥으로 integrated circuit (IC)의 gate 및 interconnection 둥으로의 활용이 대두되고 있으며, 차세대 thin film transistor liquid crystal display (TFT-LCD)의 gate 및 interconnection m materials 둥으로 사용되고 았다. 그러나, 이러한 장점을 가지고 있는 팅스텐 박막이 실제 공정상에 적용되가 위해서는 건식 식각이 주로 사용되는데, 이는 wet chemical 을 이용한 습식 식각을 사용할 경우 낮은 etch rate, line width 의 감소 및 postetch residue 잔류 동의 문제가 발생하기 때문이다. 또한 W interconnection etching 을 하기 위해서는 높은 텅스텐 박막의 etch rate 과 하부 layer ( (amorphous silicon 또는 poly-SD와의 높은 etch selectivity 가 필수적 이 라 할 수 있다. 그러 나, 지금까지 연구되어온 결과에 따르면 텅스탠과 하부 layer 와의 etch selectivity 는 2 이하로 매우 낮게 관찰되고 았으며, 텅스텐의 etch rate 또한 150nm/min 이하로 낮은 값을 나타내고 있다. 따라서 본 연구에서는 halogen-based inductively coupled plasma 를 이용하여 텅스텐 박막 식각시 여러 가지 첨가 가스에 따른 높은 텅스탠 박막의 etch rate 과 하부 layer 와의 높은 etch s selectivity 를 얻고자 하였으며, 그에 따른 식각 메커니즘에 대하여 알아보고자 하였다. $CF_4/Cl_2$ gas chemistry 에 첨 가 가스로 $N_2$와 Ar을 첨 가할 경 우 텅 스텐 박막과 하부 layer 간의 etch selectivity 증가는 관찰되지 않았으며, 반면에 첨가 가스로 $O_2$를 사용할 경우, $O_2$의 첨가량이 증가함에 따라 etch s selectivity 는 계속적으로 증가렴을 관찰할 수 있었다. 이는 $O_2$ 첨가에 따라 형성되는 WOF4 에 의한 텅스텐의 etch rates 의 감소에 비하여, $Si0_2$ 등의 형성에 의한 poly-Si etch rates 이 더욱 크게 감소하였기 때문으로 사료된다. W 과 poly-Si 의 식각 특성을 이해하기 위하여 X -ray photoelectron spectroscopy (XPS)를 사용하였으며, 식각 전후의 etch depth 를 측정하기 위하여 stylus p pmfilometeT 를 이용하였다.

  • PDF

Improvement of SiO$_2$Etching Characteristics by E-ICP (SiO$_2$식각 특성 개선을 위한 E-ICP와 ICP 식각 비교)

  • 정재성;김진우;라상호;오범환;박세근
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.887-890
    • /
    • 1999
  • The etch characteristics of E-ICP and ICP are compared for the improvement of SiO$_2$ etch Process. Etch rate and etch pattern profile are measured by $\alpha$ -step surface profiler and SEM, respectively. The E-ICP provides improved characteristics on etch rate and surface profile in comparison to ICP process.

  • PDF

Etching characteristics of Al-Nd alloy thin films using magnetized inductively coupled plasma

  • Lee, Y.J.;Han, H.R.;Yeom, G.Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.56-56
    • /
    • 1999
  • For advanced TFT-LCD manufacturing processes, dry etching of thin-film layers(a-Si, $SiN_x$, SID & gate electrodes, ITO etc.) is increasingly preferred instead of conventional wet etching processes. To dry etch Al gate electrode which is advantageous for reducing propagation delay time of scan signals, high etch rate, slope angle control, and etch uniformity are required. For the Al gate electrode, some metals such as Ti and Nd are added in Al to prevent hillocks during post-annealing processes in addition to gaining low-resistivity($<10u{\Omega}{\cdot}cm$), high performance to heat tolerance and corrosion tolerance of Al thin films. In the case of AI-Nd alloy films, however, low etch rate and poor selectivity over photoresist are remained as a problem. In this study, to enhance the etch rates together with etch uniformity of AI-Nd alloys, magnetized inductively coupled plasma(MICP) have been used instead of conventional ICP and the effects of various magnets and processes conditions have been studied. MICP was consisted of fourteen pairs of permanent magnets arranged along the inside of chamber wall and also a Helmholtz type axial electromagnets was located outside the chamber. Gas combinations of $Cl_2,{\;}BCl_3$, and HBr were used with pressures between 5mTorr and 30mTorr, rf-bias voltages from -50Vto -200V, and inductive powers from 400W to 800W. In the case of $Cl_2/BCl_3$ plasma chemistry, the etch rate of AI-Nd films and etch selectivity over photoresist increased with $BCl_3$ rich etch chemistries for both with and without the magnets. The highest etch rate of $1,000{\AA}/min$, however, could be obtained with the magnets(both the multi-dipole magnets and the electromagnets). Under an optimized electromagnetic strength, etch uniformity of less than 5% also could be obtained under the above conditions.

  • PDF

Patterning of Pt thin films using SiO$_2$mask in a high density plasma (고밀도 플라즈마에서 규소산화막을 마스크로 이용한 백금박막의 페터닝)

  • 이희섭;이종근;박세근;정양희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.87-92
    • /
    • 1997
  • Inductively coupled Cl$_{2}$ plasma has been studied to etch Pt thin films, which hardly form volatile compound with any reactive gas at normal process temperature. Low etch rate and residue problems are frequently observed. For higher etch rate, high density plasma and higher process temperature is adopted observed. For higher etch rate, high density plasma and higher process temperature is adopted and thus SiO$_{2}$ is used as for patterning mask instead of photoresist. The effect of O$_{2}$ or Ar addition to Cl$_{2}$ was investigated, and the chamber pressure, gas flow rate, surce RF power and bias RF power are also varied to check their effects on etch rate and selectivity. The major etching mechanism is the physical sputtering, but the ion assisted chemical raction is also found to be a big factor. The proposs can be optimized to obtain the etch rate of Pt up to 200nm/min and selectivity to SiO$_{2}$ at 2.0 or more. Patterning of submicron Pt lines are successfully demonstrated.

  • PDF

Hydrogen Fluoride Vapor Etching of SiO2 Sacrificial Layer with Single Etch Hole (단일 식각 홀을 갖는 SiO2 희생층의 불화수소 증기 식각)

  • Chayeong Kim;Eunsik Noh;Kumjae Shin;Wonkyu Moon
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.328-333
    • /
    • 2023
  • This study experimentally verified the etch rate of the SiO2 sacrificial layer etching process with a single etch hole using vapor-phase hydrogen fluoride (VHF) etching. To fabricate small-sized polysilicon etch holes, both circular and triangular pattern masks were employed. Etch holes were fabricated in the polysilicon thin film on the SiO2 sacrificial layer, and VHF etching was performed to release the polysilicon thin film. The lateral etch rate was measured for varying etch hole sizes and sacrificial layer thicknesses. Based on the measured results, we obtained an approximate equation for the etch rate as a function of the etch hole size and sacrificial layer thickness. The etch rates obtained in this study can be utilized to minimize structural damage caused by incomplete or excessive etching in sacrificial layer processes. In addition, the results of this study provide insights for optimizing sacrificial layer etching and properly designing the size and spacing of the etch holes. In the future, further research will be conducted to explore the formation of structures using chemical vapor deposition (CVD) processes to simultaneously seal etch hole and prevent adhesion owing to polysilicon film vibration.