• Title/Summary/Keyword: Etch rate

Search Result 601, Processing Time 0.03 seconds

Etching Properties of $RuO_2$Thin Film in Inductively Coupled Plasma (ICP에 의한 $RuO_2$박막의 식각 특성)

  • 김창일;김동표
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.863-865
    • /
    • 2001
  • In this study, RuO$_2$thin films were etched in inductively coupled $O_2$plasma. Etching characteristics of RuO$_2$thin films including etch rate and selectivity were evaluated as a function of rf power in $O_2$plasma and gas mixing ratio in $O_2$/Ar plasma. In $O_2$ plasma, the etch rate of RuO$_2$thin film increases as rf power increases. In $O_2$/Ar plasma, the etch rate of RuO$_2$thin film increases up to 10% Ar, but decrease with furthermore increasing Ar mixing ratio. The enhanced etch rate can be obtained with increasing rf power and small addition of Ar gas.

  • PDF

The Etch Characteristics of TiN Thin Film Surface in the CH4 Plasma (CH4 플라즈마에 따른 TiN 박막 표면의 식각특성 연구)

  • Woo, Jong-Chang;Um, Doo-Seung;Kim, Gwan-Ha;Kim, Dong-Pyo;Kim, Chang-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.189-193
    • /
    • 2008
  • In this study, we carried out an investigation of the etching characteristics (etch rate, selectivity to $SiO_2$ and $HfO_2$) of TiN thin films in the $CH_4$/Ar inductively coupled plasma. The maximum etch rate of $274\;{\AA}/min$ for TiN thin films was obtained at $CH_4$(80%)/Ar(20%) gas mixing ratio. At the same time, the etch rate was measured as function of the etching parameters such as RF power, Bias power, and process pressure. The X-ray photoelectron spectroscopy analysis showed an efficient destruction of the oxide bonds by the ion bombardment as well as showed an accumulation of low volatile reaction products on the etched surface. Based on these data, the ion-assisted chemical reaction was proposed as the main etch mechanism for the $CH_4$ containing plasmas.

Dry Etching Characteristics of Indium Zinc Oxide Thin Films in Adaptive Coupled Plasma

  • Woo, Jong-Chang;Choi, Chang-Auck;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.216-220
    • /
    • 2013
  • The etching characteristics of indium zinc oxide (IZO) in $Cl_2/Ar$ plasma were investigated, including the etch rate and selectivity of IZO. The IZO etch rate showed non-monotonic behavior with increasing $Cl_2$ fraction in the $Cl_2/Ar$ plasma, and with increasing source power, bias power, and process pressure. In the $Cl_2/Ar$ (75:25%) gas mixture, a maximum IZO etch rate of 87.6 nm/min and etch selectivity of 1.09 for IZO to $SiO_2$ were obtained. Owing to the relatively low volatility of the by-products formation, ion bombardment was required, in addition to physical sputtering, to obtain high IZO etch rates. The chemical state of the etched surfaces was investigated with X-ray photoelectron spectroscopy. These data suggested that the IZO etch mechanism was ion-enhanced chemical etching.

Characterization of Deep Dry Etching of Silicon Single Crystal by HDP (HDP를 이용한 실리콘 단결정 Deep Dry Etching에 관한 특성)

  • 박우정;김장현;김용탁;백형기;서수정;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.570-575
    • /
    • 2002
  • The present tendency of electrical and electronics is concentrated on MEMS devices for advantage of miniaturization, intergration, low electric power and low cost. Therefore it is essential that high aspect ratio and high etch rate by HDP technology development, so that silicon deep trench etching reactions was studied by ICP equipment. Deep trench etching of silicon was investigated as function of platen power, etch step time of etch/passivation cycle time and SF$\_$6/:C$_4$F$\_$8/ flow rate. Their effects on etch profile, scallops, etch rate, uniformity and selectivity were also studied.

High Density Inductive Coupled Plasma Etching of InP in $BCl_3$-based chemistries ($BCl_3$ 기반의 혼합 가스들을 이용한 InP 고밀도 유도결합 플라즈마 식각)

  • Cho, Guan-Sik;Lim, Wan-Tae;Baek, In-Kyoo;Lee, Je-Won;Jeon, Min-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.75-79
    • /
    • 2003
  • We studied InP etch results in high density planar inductively coupled $BCl_3$ and $BCl_3$/Ar plasmas. The investigated process parameters were ICP source power, RIE chuck power, chamber pressure and $BCl_3$/Ar gas composition. It was found that increase of ICP source power and RIE chuck power raised etch rate of InP, while that of chamber pressure decreased etch rate. Etched InP surface was clean and smooth (RMS roughness < 2 nm) with a moderate etch rate ($300\;{\sim}\;500\;{\AA}/min$) after the planar $BCl_3/Ar$ ICP etching. It may make it possible to open a new regime of InP etching with $CH_4/H_2$ - free plasma chemistry. Some amount of Ar addition (< 50%) also improved etch rates of InP, while too much Ar addition reduced etch rates of InP.

  • PDF

Modeling of Plasma Etch Process using a Radial Basis Function Network (레이디얼 베이시스 함수망을 이용한 플라즈마 식각공정 모델링)

  • Park, Kyoungyoung;Kim, Byungwhan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • A new model of plasma etch process was constructed by using a radial basis function network (RBFN). This technique was applied to an etching of silicon carbide films in a NF$_3$ inductively coupled plasma. Experimental data to train RBFN were systematically collected by means of a 2$^4$ full factorial experiment. Appropriateness of prediction models was tested with test data consisted of 16 experiments not pertaining to the training data. Prediction performance was optimized with variations in three training factors, the number of pattern units, width of radial basis function, and initial weight distribution between the pattern and output layers. The etch responses to model were an etch rate and a surface roughness measured by atomic force microscopy. Optimized models had the root mean-squared errors of 26.1 nm/min and 0.103 nm for the etch rate and surface roughness, respectively. Compared to statistical regression models, RBFN models demonstrated an improvement of more than 20 % and 50 % for the etch rate and surface roughness, respectively. It is therefore expected that RBFN can be effectively used to construct prediction models of plasma processes.

Dry Etching Characteristics of GaN using a Planar Inductively Coupled CHsub $CH_4/H_2/Ar$ Plasma (평판 유도 결합형 $CH_4/H_2/Ar$ 플라즈마를 이용한 GaN 건식 식각 특성)

  • Kim, Mun-Yeong;Baek, Yeong-Sik;Tae, Heung-Sik;Lee, Yong-Hyeon;Lee, Jeong-Hui;Lee, Ho-Jun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.616-621
    • /
    • 1999
  • A planar inductively coupled $CH_4/H_2/Ar$plasma was used to investigate dry etch characteristics of GaN as a function of input power, RF bias power, and etch gas composition. Etch rate of GaN increased with input power up to 600 W and was saturated at the higher power. Also, the etch rates increased with increasing RF bias power, composition of $CH_4$ and Ar gas. We achieved the maximum etch rate of $930{\AA}$/min at the input power 400 W, RF bias power 250 W, and operational pressure 10 mTorr. This paper shows that smooth etched surface having roughness less than 1 nm in rms can be obtained by using planar inductively coupled plasma with $CH_4/H_2/Ar$ gas chemistry.

  • PDF

The Dry Etching of TiN Thin Films Using Inductively Coupled CF4/Ar Plasma

  • Woo, Jong-Chang;Choi, Chang-Auck;Joo, Young-Hee;Kim, Han-Soo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.67-70
    • /
    • 2013
  • In this study, we changed the input parameters (gas mixing ratio, RF power, DC bias voltage, and process pressure), and then monitored the effect on TiN etch rate and selectivity with $SiO_2$. When the RF power, DC-bias voltage, and process pressure were fixed at 700 W, - 150 V, and 15 mTorr, the etch rate of TiN increased with increasing $CF_4$ content from 0 to 20 % in $CF_4$/Ar plasma. The TiN etch rate reached maximum at 20% $CF_4$ addition. As RF power, DC bias voltage, and process pressure increased, all ranges of etch rates for TiN thin films showed increasing trends. The analysis of x-ray photoelectron spectroscopy (XPS) was carried out to investigate the chemical reactions between the surfaces of TiN and etch species. Based on experimental data, ion-assisted chemical etching was proposed as the main etch mechanism for TiN thin films in $CF_4$/Ar plasma.

A Study of Al2O3 Thin Films Etching Characteristics Using Inductively Coupled BCl3/Ar Plasma (유도결합형 BCl3/Ar 플라즈마를 이용한 Al2O3 박막의 식각 특성)

  • Kim, Young-Keun;Kwon, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.445-448
    • /
    • 2011
  • In this study, the etching characteristics of $Al_2O_3$ thin films were investigated using an ICP (inductively coupled plasma) of $BCl_3$/Ar gas mixture. The etch rate of $Al_2O_3$ thin films as well as the $SiO_2/Al_2O_3$ etch selectivity were measured as functions of $BCl_3$/Ar mixing ratio (0~100% Ar) at a constant gas pressure (10 mTorr), total gas flow rate (40 sccm), input power (800 W) and bias power (100 W). The behavior of the $Al_2O_3$ etch rate was shown to be quite typical for ion-assisted etch processes with a dominant chemical etch pathway. To analyze the etching mechanism using DLP (double langmuir probe), OES (optical emission spectroscopy) and surface analysis using XPS (x-ray photoelectron spectroscopy) were carried out.

Etching characteristics of Ru thin films with $CF_4/O_2$ gas chemistry ($CF_4/O_2$ gas chemistry에 의한 Ru 박막의 식각 특성)

  • Lim, Kyu-Tae;Kim, Dong-Pyo;Kim, Chang-Il;Choi, Jang-Hyun;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.74-77
    • /
    • 2002
  • Ferroelectric Random Access Memory(FRAM) and MEMS applications require noble metal or refractory metal oxide electrodes. In this study, Ru thin films were etched using $O_2$+10% $CF_4$ plasma in an inductively coupled plasma(ICP) etching system. The etch rate of Ru thin films was examined as function of rf power, DC bias applied to the substrate. The enhanced etch rate can be obtained not only with increasing rf power and DC bias voltage, but also with small addition $CF_4$ gas. The selectivity of $SiO_2$ over Ru are 1.3. Radical densities of oxygen and fluorine in $CF_4/O_2$ plasma have been investigated by optical emission spectroscopy(OES). The etching profiles of Ru films with an photoresist pattern were measured by a field emission scanning electron microscope (FE-SEM). The additive gas increases the concentration of oxygen radicals, therefore increases the etch rate of the Ru thin films and enhances the etch slope. In $O_2$+10% $CF_4$ plasma, the etch rate of Ru thin films increases up to 10% $CF_4$ but decreases with increasing $CF_4$ mixing ratio.

  • PDF