• 제목/요약/키워드: EuroNCAP

검색결과 30건 처리시간 0.016초

유럽 신차 안전도 평가방법을 적용한 보행자 대퇴부 상해 영향 분석 (A Study of Euro NCAP Pedestrian Protection Protocol in Upper Leg Area)

  • 오형준;조한천;김준의;김승기
    • 자동차안전학회지
    • /
    • 제6권1호
    • /
    • pp.16-21
    • /
    • 2014
  • Recently Korea and many countries are legislated for pedestrian protection as following the GTR(Global Technical Regulation). Most NCAP organization have been applying pedestrian protection results in their own rating system in individual or overall rating. Euro NCAP agency has been introduced it first. From the beginning, Euro NCAP had assessed occupant and pedestrian protection. It has become to strengthen a pedestrian protection protocol every time published. Korea NCAP also has been rating pedestrian protection with overall rating system. This paper proposed to study new pedestrian protection protocol especially upper leg in order to find injury response based on physical test. On Euro NCAP, the upper leg injury are assessed two kind of value which are bending moment and force.

보행자 더미모델을 이용한 EURO-NCAP 상부다리모형 평가시험 방법에 대한 분석 (Upper Legform Impact Test of the EURO-NCAP Protocol using a Pedestrian Dummy Model)

  • 박상옥;최욱한;손대근;박경진;이은덕;권해붕
    • 자동차안전학회지
    • /
    • 제9권4호
    • /
    • pp.14-19
    • /
    • 2017
  • The mortality rate of car-pedestrian accidents is quite high compared to the frequency of accident. Recently, governments and insurance companies tend to establish and implement new safety standards for pedestrian protection such as EURO-NCAP and K-NCAP. The performance for the pedestrian protection has been gradually improved, but it is still insufficient. Therefore, various studies for the pedestrian protection are being carried out. The car-pedestrian accident is simulated in order to study to the upper legform test of the EURO-NCAP protocol. A pedestrian dummy model is employed and the results are discussed.

AE-MDB시험 시 인체모형 상해치에 대한 시험 인자 영향성 연구 (The Study on influence of test factors for WorldSID injury through AE-MDB side crash test)

  • 선홍열;한표경;오은경;윤일성
    • 자동차안전학회지
    • /
    • 제7권1호
    • /
    • pp.7-12
    • /
    • 2015
  • NCAP(New Car Assessment Program) makes vehicle manufacturer improve safety performance through free competition and customers guarantee vehicle selection by providing information of vehicle safety. That's why it is important not only to meet the regulation, but also to cope with NCAP. EuroNCAP(European New Car Assessment Program) side tests have conducted by using Progressive MDB and Euro SID II in order to reproduce crash test between two vehicles over 10 years. However various researches report that Progressive MDB and Euro SID II do not reflect evolving vehicle design, impact performance and biofidelity of human. Therefore EuroNCAP has the plan to conduct AE-MDB side crash test using WorldSID which is more evolved from 2015 by replacing Progressive MDB and EuroSID II. Automobile manufacturers need to develop safety performance for new test closely. This paper is to find test set-up parameters which affect into dummy injury instead of restraint system and to research on its tendency. It is processed with mini and small car to know influence as changing vehicle size and also analyzed by DFSS(Design for six sigma) which is one of optimization tools. DFSS is vaildated by simulating CAE with L18 orthogonal array of 6 control factors adjustable as EuroNCAP requirement.

후방 충돌 펄스와 NCAP 펄스 차이로 인한 목상해 특성 비교 (Compare Characteristics of Neck Injuries between Rear Impact Pulse and NCAP Pulse)

  • 김종곤;박종호
    • 자동차안전학회지
    • /
    • 제9권3호
    • /
    • pp.7-12
    • /
    • 2017
  • The whiplash is the most important issue of low speed rear-impact. So auto makers are committed to developing a seat to improve whiplash injury. Most NCAP tests have been used by same pulse (Mid Velocity 16kph). Only Euro NCAP uses different pulse that consists of Low, Mid, High velocity. But Euro NCAP also uses same pulse in Mid velocity as other NCAP test. That Mid velocity NCAP pulse was made by rear impact that has 90's vehicle structure properties. That pulse was used until now days. However these days, auto maker use more high tensile steel than 90's as customer and society demand more fuel efficiency and light vehicle with good safety structure. So modern vehicles have different pulse patterns of rear impact than NCAP pulse and 90's vehicle crash properties. In this paper, the test was conducted by following condition. Target car was impacted by the rigid barrier with certain velocity. Finally target vehicle gained delta V 16kph which was same velocity as NCAP Mid Velocity pulse. It is critical velocity which occur long period neck injury. It is very different pulse that was gained by real car impact from NCAP pulse. And it has higher peak G with high fluctuation and short duration than NCAP pulse.

상호안전성을 고려한 차대차 정면 충돌 안전성 선행 연구 (A Study on Car-to-car Frontal Impact Considering the Vehicle Compatibility)

  • 이창민;신장호;김현우;박건호;박영준
    • 자동차안전학회지
    • /
    • 제9권1호
    • /
    • pp.13-18
    • /
    • 2017
  • In recent years, NCAP regulations of many countries have induced automaker to improve the vehicle crashworthiness. But, the current NCAP regulations don't cover all types of traffic accidents. And rapid-increasing market share of compact cars and SUVs has brought for both consumer and automaker to pay more attention on crash compatibility. So, many countries have tried to develop the new crash test mode and update the present crash test mode. Especially, Euro NCAP has been developing a new impact protocol of the car-to-car frontal offset impact including the crash compatibility assessment. There are plans to introduce this new protocol in 2020, and it will be replaced the current Euro NCAP frontal offset impact. The test dummy in the front seats of this new test mode will be changed from 50% Hybrid-III male to 50% THOR male. This paper will address the vehicle responses, the occupant responses and the vehicle compatibility performance from a full vehicle crash test using the new car-to-car frontal offset test protocol of Euro NCAP.

진자시험을 통한 EuroSID2 및 WorldSID 더미의 상해 최적화 연구 (Injury Optimization Study of WorldSID and EuroSID2re under Pendulum Loadings)

  • 최규상;정갑성;김경철;함병렬
    • 자동차안전학회지
    • /
    • 제6권1호
    • /
    • pp.41-47
    • /
    • 2014
  • A new dummy has improved biofidelity from Fair to Good compare with EuroSID2re which is currently used for regulation tests and NCAP tests. Some instrumentation of each body region has been changed to measure the assessment of injury risk. The objective of this study is to find out the injury characteristic of each dummy and to calculate the relation between external force and injury for each dummy with pendulum tests. Finally, this study suggests the optimized external force to meet consumer tests. A new dummy named WorldSID for side impact will be introduced into EuroNCAP tests after 2015. Korea government is also planning to adopt WorldSID at KNCAP tests from 2017 and Global Technical Regulation (GTR) will also adopt WorldSID to oblique side pole crash.

차 대 차 부분 정면충돌 시험의 MPDB compatibility 평가에 대한 연구 (A Study on MPDB Compatibility Assessment of Car to Car Offset Frontal Impact Test)

  • 선홍열;윤일성;김재수;이만수
    • 자동차안전학회지
    • /
    • 제11권4호
    • /
    • pp.6-15
    • /
    • 2019
  • Since introducing the offset frontal impact test in EuroNCAP in 1997, the vehicle has been constantly changing according to its usage and purpose. As of 2019, many vehicles have been released to the public, which has led to a large structural mass difference between small, medium and large vehicles. Also, the geometry of the front of the vehicle is completely different for each vehicle and tends not to be perfectly aligned at frontal collisions. The difference in mass of each of these vehicles and less performing structures for offset crashes have led to dramatically worse outcome in a car to car offset frontal impact tests. Even though a decade later passenger cars have become much safer due to consumer test programs and regulatory requirements, the aggressiveness and compatibility that can cause damage to the opponent car in the event of car to car collision is not considered in the above-mentioned section, and therefore much improvement is needed. After many years of study to solve this problem, EuroNCAP has developed a new mode MPDB offset front test that considers the aggressiveness and compatibility that can affect the opponent cars that have collided. This paper introduces the development process of aggressiveness and compatibility evaluation method of MPDB in EuroNCAP which will be implemented from 2020. Several impact tests have been conducted at different test conditions to rate the vehicle structure performance only focused on aggressiveness and compatibility of MPDB.

국내 도로환경과 Euro NCAP VRU Test Protocol v3.0.1을 고려한 AEB(V2P) 시험평가 방법에 관한 연구 (A Study on the Test Evaluation Method of AEB (V2P) Considering the Road Environment in Korea and Euro NCAP Test Protocol v3.0.1)

  • 권병헌;이선봉
    • 자동차안전학회지
    • /
    • 제11권4호
    • /
    • pp.28-38
    • /
    • 2019
  • In the world, traffic accidents and environmental pollution caused by the increase of vehicles are becoming a serious social problem. According to the 2016 data published by the Korea Highway Traffic Authority, Korea owns 49.9 vehicles per 100 people. This is the 28th largest number among the 35 OECD member countries. In addition, the number of deaths from traffic accidents in Korea totaled 4,292, of which 1,714 were caused by traffic accidents involving vehicles and pedestrians. To reduce these human casualties, the automotive industry is constantly working on the development and commercialization of Adaptive Driver Assist System (ADAS). ADAS is the system providing convenience and safeness for drivers. In general, ADAS consists of Autonomous Emergency Braking (AEB), Highway Driving Assist (HDA), Adaptive Cruise Control (ACC), Lane Keeping Assist System (LKAS). Among them, the AEB detects the possibility of collision by the vehicle itself and plays a role of avoiding the collision or reducing the damage through active braking. For such AEB, Euro NCAP has been developing test-evaluation methods for the vulnerable since 2017. Therefore, In this paper analyzes the scenario of Euro NCAP VRU Test Protocol v3.0.1, which will be established in 2020, and proposes test conditions according to the Korean road traffic law. In addition, the reliability of the proposed scenario and test conditions was verified by comparing and analyzing the proposed theoretical evaluation formulas and actual test results.

Experimental analysis of whiplash injury with hybrid III 50 percentile test dummy

  • Gocmen, Ulas;Gokler, Mustafa Ilhan
    • Advances in Automotive Engineering
    • /
    • 제1권1호
    • /
    • pp.61-77
    • /
    • 2018
  • In this study, the effects of sitting position of the driver on the whiplash neck injury have been analyzed experimentally by using hybrid III series 50 percentile male crash test dummy. A testing platform consisting of vehicle ground, driver foot rest, driver seat and a 3-point seatbelt has been prepared. This testing platform and the instrumented crash test dummy are prepared for tests according to the Euro NCAP whiplash testing protocol. The prepared test set-up has been exposed to 3 different acceleration-time loading curves defined in the Euro NCAP whiplash testing protocol by performing sled tests. 9 different sled tests have been performed with the combinations of 3 different seating positions of the crash test dummy and 3 different acceleration-time loading curves. The sensor data obtained from the crash test dummy and high-speed videos taken are analyzed according to the injury assessments criteria defined in the Euro NCAP whiplash testing protocol and the criticality of the whiplash injury is defined. It is seen that the backset distance of the driver head with the headrest and the height difference of the top of the head of the driver with the headrest have a great importance on whiplash injuries.

AE-MDB 측면 충돌 시험 시 WorldSID 50%ile dummy 상해치에 대한 제어인자 연구 (The Study on control factor of WorldSID 50%ile dummy injury through AE-MDB side crash test)

  • 선홍열;한표경;김재수;김기석;윤일성
    • 자동차안전학회지
    • /
    • 제6권1호
    • /
    • pp.5-9
    • /
    • 2014
  • Over the past ten years, since the introduction of the side crash test regulation in Europe, much research work has been performed internationally to develop new and modified test procedures to improve the level of occupant protection offered by vehicles in side crash test. This research has been co-ordinated and finally contributed to development of an AE-MDB(Advanced European Moving Deformable Barrier) and WorldSID (Worldwide Side Impact Dummy). EuroNCAP(European New Car Assessment Program) has the plan to conduct AE-MDB side crash test using WorldSID from 2015 by replacing Progressive MDB and EuroSID II. Automobile manufacturers need to respond to these changes closely. This paper is to find dominant control factor and analyze it of WorldSID 50%ile dummy injury through AE-MDB side crash test by predicting best and worst condition. And control factors will be validated within EuroNCAP regulations. This paper is analyzed by DFSS(Design for six sigma) which contains 5 control factors and is evaluated by ANOVA with the data as a result of LS-DYNA analysis correlated with crash pulse from 50 kph AE-MDB side crash test using WorldSID 50%ile dummy.