• Title/Summary/Keyword: Evaporating droplet

Search Result 34, Processing Time 0.044 seconds

The study of a fire fighting characteristic by a Single Evaporating Droplet in the case of a fire of military enclosure space (군사용 밀폐공간내의 화재시 단일 증발액적에 의한 방재특성 연구)

  • 이진호;방창훈;김정수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.207-217
    • /
    • 2000
  • A fire fighting characteristic by a single evaporating droplet in the case of a fire of military enclosure space was studied experimentally. Transient cooling of solid surface by water droplet evaporation has been investigated through controlled experiments using a heated brass cylinder. Quantitative predictions of droplet evaporation time and in-depth transient temperature distribution in solid have been made. The particular interest was in the removal of thermal energy from the heated cylinder by evaporative cooling. A $10{\mu}1$ single droplet is deposited on a horizontal brass surface with initial temperatures in the range of $90^{\circ}C{\sim}130^{\circ}C.$ The results can be summarized as follows; Evaporating droplet was divided into three different configuration. Evaporation time was predicted as a function of initial surface temperature ($t_c=492.62-6.89T_{s0}+0.0248T_{s0}^2).$ The contact temperature was predicted as a function of initial surface temperature( $T_{i}$=0.94 $T_{s0}$+1.4), The parameter ${\beta}_o$ was predicted as a function of initial surface temperature( ${\beta}_0$ : 0.O0312 $T_{s0}+0.932$)>)>)

  • PDF

Tomographic PIV measurement of internal complex flow of an evaporating droplet with non-uniformly receding contact lines

  • Kim, Hyoungsoo;Belmiloud, Naser;Mertens, Paul W.
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • We investigate an internal flow pattern of an evaporating droplet where the contact line non-uniformly recedes. By using tomographic Particle Image Velocimetry, we observe a three-dimensional azimuthal vortex pair that is maintained until the droplet is completely dried. The non-uniformly receding contact line motion breaks the flow symmetry. Finally, a simplified scaling model presents that the mechanical stress along the contact line is proportional to the vorticity magnitude, which is validated by the experimental results.

Development of the Real-time Concentration Measurement Method for Evaporating Binary Mixture Droplet using Surface Plasmon Resonance Imaging (표면플라즈몬공명 가시화 장치를 이용한 증발하는 이종혼합물 액적의 실시간 농도 가시화 기법 개발)

  • Jeong, Chan Ho;Lee, Hyung Ju;Choi, Chang Kyoung;Lee, Hyoungsoon;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.26 no.4
    • /
    • pp.212-218
    • /
    • 2021
  • The present study aims to develop the Surface Plasmon Resonance (SPR) imaging system facilitating the real-time measurement of the concentration of evaporating binary mixture droplet (BMD). We introduce the theoretical background of the SPR imaging technique and its methodology for concentration measurement. The SPR imaging system established in the present study consists of a LED light source, a polarizer, a lens, and a band pass filter for the collimated light of a 589 nm wavelength, and a CCD camera. Based on the Fresnel multiple-layer reflection theory, SPR imaging can capture the change of refractive index of evaporating BMD. For example, the present study exhibits the visualization process of ethylene glycol (EG)-water (W) BMD and measures real-time concentration change. Since the water component is more volatile than the ethylene glycol component, the refractive index of EG-W BMD varies with its mixture composition during BMD evaporation. We successfully measured the ethylene glycol concentration within the evaporating BMD by using SPR imaging.

The Effects of Initial Droplet Shape and Number Density on Modeling of Non-evaporating Diesel Sprays (디젤분무의 모델에서 액적의 형상 및 수밀도의 영향에 관한 연구)

  • Won, Y.H.
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.22-30
    • /
    • 2002
  • A number of droplet breakup models have been developed to predict the diesel spray. The capabilities of droplet deformation and breakup models such as TAB, ETAB, DDB and APTAB models are evaluated in modeling the non-evaporating diesel sprays injected into atmosphere. New methods are also suggested that take into account the non- spherical shape of droplets and the reduced drag force by the presence of neighbouring droplets. The KIVA calculations with standard ETAB, DDB, and APTAB models predict well the spray tip penetrations of the experiment, but overestimate the Sauter mean Diameter(SMD) of droplets. The calculation with non spherical droplets injected from the nozzle shows very similar results to the calculation with spherical droplets. The drag coefficient which is linearly increased with the time after start of injection during the breakup time gives the smaller SMD that agrees well with the experimental result.

  • PDF

Numerical Investigation of a Steady Non-Evaporating Hollow-Cone Spray Interacting with an Annular Air Jet (정상 할로우 콘 분무와 환형 공기 제트의 상호작용에 관한 수치적 연구)

  • Kim, Woo-Tae;Huh, Kang-Y.
    • Journal of ILASS-Korea
    • /
    • v.5 no.2
    • /
    • pp.43-52
    • /
    • 2000
  • Numerical simulation of steady, non-evaporating hollow-cone sprays interacting with concentric annular air jets is performed using the discrete stochastic particle method in KIVA. The spray characteristics such as SMD, mean droplet velocity, liquid volume flux, air/liquid mass ratio, and droplet number density arc obtained and compared with the measurements involving different air flow rates in large and small annuli. Overall satisfactory agreement is achieved between calculation and experiment except for the deviation in the downstream SMD arising from uncertainty in the size distribution function at injection, and inaccuracy in the averaged spray parameters due to the small volumes of axisymmetric 2-D sector meshes close to the axis.

  • PDF

Visualization of Breakup and Atomization Processes in Non-evaporating Diesel Sprays (비증발 디젤분무의 분열과 미립화 과정의 가시화)

  • 원영호;김우태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • Two-dimensional laser visualization methods have been used in the study of breakup and atomization processes of non-evaporating diesel sprays. A single-hole spray injected into a quiescent atmospheric environment was visualized by the LIF(Laser Induced Fluorescence) and scattering technique. The LIF technique could be implemented to take the images which are magnified enough to show the shape of liquid ligaments and small droplets. The spontaneous scattering and fluorescent images of sprays were also taken to investigate the atomization of droplets. In the tip and periphery of a spray. the scattering light is bright and the ratio of fluorescent/scattering intensity is lower. This characteristics indicate the very high number density of small droplets which are well atomized.

Numerical Studies on Vaporization Characterization and Combustion Processes in High-Pressure Fuel Sprays (고압 상태에서의 연료 분무의 증발 및 연소 특성 해석)

  • Moon, Y.W.;Kim, Y.M.;Kim, S.W.;Kim, J.Y.;Yoon, I.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.3
    • /
    • pp.49-59
    • /
    • 1998
  • The vaporization characteristics and spray combustion processes in the high-pressure environment are numerically investigated. This study employ the high-pressure vaporization model together with the state-of-art spray submodels. The present high-pressure vaporization model can account for transient liquid heating, circulation effect inside the droplet forced convection, Stefan flow effect, real gas effect and ambient gas solubility in the liquid droplets. Computations are carried out for the evaporating sprays, the evaporating and burning sprays, and the spray combustion processes of the turbocharged diesel engine. Numerical results indicate that the high-pressure effects are quite crucial for simulating the spray combustion processes including vaporization, spray dynamics, combustion, and pollutant formation.

  • PDF

Microexplosive Vaporization of Miscible Binary Fuel Droplets (미세폭발을 가진 혼화 이성분 연료 액적의 증발 현상)

  • Ghassemi, Hojat;Baek, Seung-Wook;Khan, Qasim Sarwar
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.120-131
    • /
    • 2005
  • The evaporation characteristics of single and multicomponent droplets hanging at the tip of a quartz fiber are studied experimentally at the different environmental conditions under normal gravity. Heptane and Hexadecane are selected as two fuels with different evaporation rates and boiling temperatures. At the first step, the evaporation of single component droplet of both fuels has been examined separately. At the next step the evaporation of several blends of these two fuels, as a binary component droplet, has been studied. The temperature and pressure range is selected between 400 and 700 $^{\circ}C$, and 0.1 and 2.5 MPa, respectively. High temperature environment has been provided by a falling electrical furnace. The initial diameter of droplet was in range of 1.1 and 1.3 mm. The evaporation process was recorded by a high speed CCD camera. The results of binary droplet evaporation show the three staged evaporation. In the the first stage the more volatile component evaporates. The droplet temperature rises after an almost non evaporating period and in the third stage a quasi linear evaporation takes place. The evaporation of the binary droplet at low pressure is accompanied with bubble formation and droplet fragmentation and leads to incomplete microexplosion. The component concentration affects the evaporation behavior of the first two stages. The bubble formation and droplet distortion does not appear at high environment pressure. Nomenclature

  • PDF

Measurement of the Superheat Limit of Liquids and Droplet Behavior at this Limit (액체의 과열한계 측정과 과열한계에 달한 액적의 거동)

  • Park, Hong-Chul;Byun, Gi-Taek;Kwak, Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1317-1326
    • /
    • 2003
  • The maximum temperature limit at which liquid boils explosively is called the superheat limit of liquids. The superheat limits of hydrocarbon liquids and their mixtures were measured by the droplet explosion technique. Also the fully evaporated droplet at the superheat limit and subsequent bubble evolution from the fully evaporated droplet were visualized. The pressure wave emanating from the evaporating droplet and subsequent bubble evolution process were measured by a piezoelectric transducer.