• 제목/요약/키워드: Evolutionary Algorithm

검색결과 636건 처리시간 0.032초

진화활동성을 이용한 퍼지 제어기의 진화 분석 (An Analysis of the Evolution of a Fuzzy Logic Controller using Evolutionary Activity)

  • 이승익;조성배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.113-116
    • /
    • 2001
  • This paper analyzes the evolutionary process of a fuzzy logic controller using evolutionary activity. An evolutionary algorithm is commonly used to find solutions for given problems. However, little has been done on the analysis of the evolutionary pathways to the optimal solutions. This paper uses a genetic algorithm to construct a fuzzy logic controller for a mobile robot and applies evolutionary activity to measure the adaptability quantitatively. Evolutionary activity can be defined as the rate at which useful genetic innovations are absorbed in the population. By measuring the evolutionary activities, we will show quantitatively that the optimal fuzzy logic controller is not from other genetic phenomena like chance or necessity, but from the adaptability to a given encironment.

  • PDF

GA-Hard 문제를 풀기 위한 공진화 모델 (Co-Evolutionary Model for Solving the GA-Hard Problems)

  • 이동욱;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.375-381
    • /
    • 2005
  • 일반적으로 유전자 알고리즘은 최적 시스템을 디자인하는데 주로 이용된다. 하지만 알고리즘의 성능은 적합도 함수나 시스템 환경에 의해 결정된다. 두 개의 개체군이 꾸준히 상호작용하고 공진화 하는 공진화 알고리즘은 이러한 문제를 극복할 수 있을 것으로 기대된다. 본 논문에서는 GA가 풀기 어려운 GA-hard problem을 풀기 위하여 저자가 제안한 3가지 공진화 모델을 설명한다. 첫 번째 모델은 찾고자하는 해와 환경을 각각 경쟁하는 개체군으로 구성해 진화하는 방법으로 사용자의 환경설정에 의해 지역적 해를 찾는 것을 방지하는 경쟁적 공진화 알고리즘이다. 두 번째 모델은 호스트 개체군과 기생(스키마) 개체군으로 구성된 스키마 공진화 알고리즘이다. 이 알고리즘에서 스키마 개체군은 호스트 개체군에 좋은 스키마를 공급한다. 세 번째 알고리즘은 두 개체군이 서로 게임을 통해 진화하도록 하는 게임이론에 기반한 공진화 알고리즘이다. 각 알고리즘은 비주얼 서보잉, 로봇 주행, 다목적 최적화 문제에 적용하여 그 유효성을 입증한다.

유연제조시스템의 공정계획을 위한 다목적 진화알고리듬 (A multiobjective evolutionary algorithm for the process planning of flexible manufacturing systems)

  • 김여근;신경석;김재윤
    • 한국경영과학회지
    • /
    • 제29권2호
    • /
    • pp.77-95
    • /
    • 2004
  • This paper deals with the process planning of flexible manufacturing systems (FMS) with various flexibilities and multiple objectives. The consideration of the manufacturing flexibility is crucial for the efficient utilization of FMS. The machine, tool, sequence, and process flexibilities are considered In this research. The flexibilities cause to increase the Problem complexity. To solve the process planning problem, an this paper an evolutionary algorithm is used as a methodology. The algorithm is named multiobjective competitive evolutionary algorithm (MOCEA), which is developed in this research. The feature of MOCEA is the incorporation of competitive coevolution in the existing multiobjective evolutionary algorithm. In MOCEA competitive coevolution plays a role to encourage population diversity. This results in the improvement of solution quality and, that is, leads to find diverse and good solutions. Good solutions means near or true Pareto optimal solutions. To verify the Performance of MOCEA, the extensive experiments are performed with various test-bed problems that have distinct levels of variations in the four kinds of flexibilities. The experiments reveal that MOCEA is a promising approach to the multiobjective process planning of FMS.

비대칭형 다계층 공생 진화알고리듬을 이용한 FMS 공정계획과 일정계획의 통합 (The Integration of FMS Process Planning and Scheduling Using an Asymmetric Multileveled Symbiotic Evolutionary Algorithm)

  • 김여근;김재윤;신경석
    • 대한산업공학회지
    • /
    • 제30권2호
    • /
    • pp.130-145
    • /
    • 2004
  • This paper addresses the integrated problem of process planning and scheduling in FMS (Flexible Manufacturing System). The integration of process planning and scheduling is important for an efficient utilization of manufacturing resources. In this paper, a new method using an artificial intelligent search technique, called asymmetric multileveled symbiotic evolutionary algorithm, is presented to handle the two functions at the same time. Efficient genetic representations and operator schemes are considered. While designing the schemes, we take into account the features specific to each of process planning and scheduling problems. The performance of the proposed algorithm is compared with those of a traditional hierarchical approach and existing evolutionary algorithms. The experimental results show that the proposed algorithm outperforms the compared algorithms.

직각거리 스타이너 나무 문제의 하이브리드 진화 해법에서 효율적인 적합도 추정에 관한 연구 (An Estimation of Fitness Evaluation in Evolutionary Algorithm for the Rectilinear Steiner Tree Problem)

  • 양병학
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2006년도 추계학술대회
    • /
    • pp.589-598
    • /
    • 2006
  • The rectilinear Steiner tree problem is to find a minimum-length rectilinear interconnection of a set of terminals in the plane. It is well known that the solution to this problem will be the minimal spanning tree (MST) on some set Steiner points. A hybrid evolutionary algorithm is introduced based upon the Prim algorithm. The Prim algorithm for the fitness evaluation requires heavy calculation time. The fitness value of parents is inherited to their child and the fitness value of child is estimated by the inherited structure of tree. We introduce four alternative evolutionary algorithms, Experiment result shows that the calculation time is reduced to 25% without loosing the solution quality by using the fitness estimation.

  • PDF

차분진화 알고리즘을 이용한 Nearest Prototype Classifier 설계 (Design of Nearest Prototype Classifier by using Differential Evolutionary Algorithm)

  • 노석범;안태천
    • 한국지능시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.487-492
    • /
    • 2011
  • 본 논문에서는 가장 단순한 구조를 가진 Nearest Prototype Classifier의 성능 개선을 위해 차분 진화 알고리즘을 적용하여 prototype의 위치를 결정하는 방법을 제안하였다. 차분 진화 알고리즘을 이용하여 prototype의 위치 벡터가 결정이 되며, 차분 진화 알고리즘에 의해 결정된 prototype의 class label을 결정하기 위한 class label 결정 알고리즘도 제안하였다. 제안된 알고리즘의 성능 평가를 위해 기존의 패턴 분류기와 비교 결과를 보인다.

다계층 공생 진화알고리듬을 이용한 공급사슬경영의 생산과 분배의 통합계획 (An Integrated Planning of Production and Distribution in Supply Chain Management using a Multi-Level Symbiotic Evolutionary Algorithm)

  • 김여근;민유종
    • 한국경영과학회지
    • /
    • 제28권2호
    • /
    • pp.1-15
    • /
    • 2003
  • This paper presents a new evolutionary algorithm to solve complex multi-level integration problems, which is called multi-level symbiotic evolutionary algorithm (MEA). The MEA uses an efficient feedback mechanism to flow evolution information between and within levels, to enhance parallel search capability, and to improve convergence speed and population diversity. To show the MEA's applicability, It is applied to the integrated planning of production and distribution in supply chain management. The encoding and decoding methods are devised for the integrated problem. A set of experiments has been carried out, and the results are reported. The superiority of the algorithm's performance is demonstrated through experiments.

Game Model Based Co-evolutionary Solution for Multiobjective Optimization Problems

  • Sim, Kwee-Bo;Kim, Ji-Yoon;Lee, Dong-Wook
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권2호
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real-world problems encountered by engineers involve simultaneous optimization of competing objectives. In this case instead of single optima, there is a set of alternative trade-offs, generally known as Pareto-optimal solutions. The use of evolutionary algorithms Pareto GA, which was first introduced by Goldberg in 1989, has now become a sort of standard in solving Multiobjective Optimization Problems (MOPs). Though this approach was further developed leading to numerous applications, these applications are based on Pareto ranking and employ the use of the fitness sharing function to maintain diversity. Another scheme for solving MOPs has been presented by J. Nash to solve MOPs originated from Game Theory and Economics. Sefrioui introduced the Nash Genetic Algorithm in 1998. This approach combines genetic algorithms with Nash's idea. Another central achievement of Game Theory is the introduction of an Evolutionary Stable Strategy, introduced by Maynard Smith in 1982. In this paper, we will try to find ESS as a solution of MOPs using our game model based co-evolutionary algorithm. First, we will investigate the validity of our co-evolutionary approach to solve MOPs. That is, we will demonstrate how the evolutionary game can be embodied using co-evolutionary algorithms and also confirm whether it can reach the optimal equilibrium point of a MOP. Second, we will evaluate the effectiveness of our approach, comparing it with other methods through rigorous experiments on several MOPs.

Game Theory Based Coevolutionary Algorithm: A New Computational Coevolutionary Approach

  • Sim, Kwee-Bo;Lee, Dong-Wook;Kim, Ji-Yoon
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권4호
    • /
    • pp.463-474
    • /
    • 2004
  • Game theory is a method of mathematical analysis developed to study the decision making process. In 1928, Von Neumann mathematically proved that every two-person, zero-sum game with many pure finite strategies for each player is deterministic. In the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) as introduced by Maynard Smith in 1982. Keeping pace with these game theoretical studies, the first computer simulation of coevolution was tried out by Hillis. Moreover, Kauffman proposed the NK model to analyze coevolutionary dynamics between different species. He showed how coevolutionary phenomenon reaches static states and that these states are either Nash equilibrium or ESS in game theory. Since studies concerning coevolutionary phenomenon were initiated, there have been numerous other researchers who have developed coevolutionary algorithms. In this paper we propose a new coevolutionary algorithm named Game theory based Coevolutionary Algorithm (GCEA) and we confirm that this algorithm can be a solution of evolutionary problems by searching the ESS. To evaluate this newly designed approach, we solve several test Multiobjective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by the coevolutionary algorithm and analyze the optimization performance of our algorithm by comparing the performance of our algorithm with that of other evolutionary optimization algorithms.

디지털 디자인 미디어 - Evolutionary Algorithms의 현대건축에의 적용 방법론 (Design Application of Evolutionary Algorithms in Architecture)

  • 김호정
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.39-46
    • /
    • 2007
  • I discuss the preliminary version of an investigative software, GSE, - Genetic 3D Surface Explorer, in which genetic operations interact with AutoCAD to generate novel 3D Forms for the Architect. GSE allows us to comment on design issues concerning computer aided design tools based on evolutionary algorithms.

  • PDF