• Title/Summary/Keyword: Evolutionary Artificial Neural Networks

Search Result 19, Processing Time 0.037 seconds

A NEW ALGORITHM OF EVOLVING ARTIFICIAL NEURAL NETWORKS VIA GENE EXPRESSION PROGRAMMING

  • Li, Kangshun;Li, Yuanxiang;Mo, Haifang;Chen, Zhangxin
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.83-89
    • /
    • 2005
  • In this paper a new algorithm of learning and evolving artificial neural networks using gene expression programming (GEP) is presented. Compared with other traditional algorithms, this new algorithm has more advantages in self-learning and self-organizing, and can find optimal solutions of artificial neural networks more efficiently and elegantly. Simulation experiments show that the algorithm of evolving weights or thresholds can easily find the perfect architecture of artificial neural networks, and obviously improves previous traditional evolving methods of artificial neural networks because the GEP algorithm imitates the evolution of the natural neural system of biology according to genotype schemes of biology to crossover and mutate the genes or chromosomes to generate the next generation, and the optimal architecture of artificial neural networks with evolved weights or thresholds is finally achieved.

  • PDF

A Study on an Artificial Neural Network Design using Evolutionary Programming (진화 프로그래밍 기법을 이용한 신경망의 자동설계에 관한 연구)

  • 강신준;고택범;우천희;이덕규;우광방
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.281-287
    • /
    • 1999
  • In this paper, a design method based on evolutionary programming for feedforward neural networks which have a single hidden layer is presented. By using an evolutionary programming, the network parameters such as the network structure, weight, slope of sigmoid functions and bias of nodes can be acquired simultaneously. To check the effectiveness of the suggested method, two numerical examples are examined. The performance of the identified network is demonstrated.

  • PDF

Evolving Team-Agent Based on Dynamic State Evolutionary Artificial Neural Networks (동적 상태 진화 신경망에 기반한 팀 에이전트의 진화)

  • Jin, Xiang-Hua;Jang, Dong-Heon;Kim, Tae-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.290-299
    • /
    • 2009
  • Evolutionary Artificial Neural Networks (EANNs) has been highly effective in Artificial Intelligence (AI) and in training NPCs in video games. When EANNs is applied to design game NPCs' smart AI which can make the game more interesting, there always comes two important problems: the more complex situation NPCs are in, the more complex structure of neural networks needed which leads to large operation cost. In this paper, the Dynamic State Evolutionary Neural Networks (DSENNs) is proposed based on EANNs which deletes or fixes the connection of the neurons to reduce the operation cost in evolution and evaluation process. Darwin Platform is chosen as our test bed to show its efficiency: Darwin offers the competitive team game playing behaviors by teams of virtual football game players.

  • PDF

Using Evolutionary Optimization to Support Artificial Neural Networks for Time-Divided Forecasting: Application to Korea Stock Price Index

  • Oh, Kyong Joo
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.153-166
    • /
    • 2003
  • This study presents the time-divided forecasting model to integrate evolutionary optimization algorithm and change point detection based on artificial neural networks (ANN) for the prediction of (Korea) stock price index. The genetic algorithm(GA) is introduced as an evolutionary optimization method in this study. The basic concept of the proposed model is to obtain intervals divided by change points, to identify them as optimal or near-optimal change point groups, and to use them in the forecasting of the stock price index. The proposed model consists of three phases. The first phase detects successive change points. The second phase detects the change-point groups with the GA. Finally, the third phase forecasts the output with ANN using the GA. This study examines the predictability of the proposed model for the prediction of stock price index.

Evolving Cellular Automata Neural Systems(ECANS 1)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.158-163
    • /
    • 1998
  • This paper is our first attempt to construct a information processing system such as the living creatures' brain based on artificial life technique. In this paper, we propose a method of constructing neural networks using bio-inspired emergent and evolutionary concept, Ontogeny of living things is realized by cellular automata model and Phylogeny that is living things adaptation ability themselves to given environment, are realized by evolutionary algorithms. Proposing evolving cellular automata neural systems are calledin a word ECANS. A basic component of ECANS is 'cell' which is modeled on chaotic neuron with complex characteristics, In our system, the states of cell are classified into eight by method of connection neighborhood cells. When a problem is given, ECANS adapt itself to the problem by evolutionary method. For fixed cells transition rule, the structure of neural network is adapted by change of initial cell' arrangement. This initial cell is to become a network b developmental process. The effectiveness and the capability of proposed scheme are verified by applying it to pattern classification and robot control problem.

  • PDF

Numerical solution of beam equation using neural networks and evolutionary optimization tools

  • Babaei, Mehdi;Atasoy, Arman;Hajirasouliha, Iman;Mollaei, Somayeh;Jalilkhani, Maysam
    • Advances in Computational Design
    • /
    • v.7 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • In this study, a new strategy is presented to transmit the fundamental elastic beam problem into the modern optimization platform and solve it by using artificial intelligence (AI) tools. As a practical example, deflection of Euler-Bernoulli beam is mathematically formulated by 2nd-order ordinary differential equations (ODEs) in accordance to the classical beam theory. This fundamental engineer problem is then transmitted from classic formulation to its artificial-intelligence presentation where the behavior of the beam is simulated by using neural networks (NNs). The supervised training strategy is employed in the developed NNs implemented in the heuristic optimization algorithms as the fitness function. Different evolutionary optimization tools such as genetic algorithm (GA) and particle swarm optimization (PSO) are used to solve this non-linear optimization problem. The step-by-step procedure of the proposed method is presented in the form of a practical flowchart. The results indicate that the proposed method of using AI toolsin solving beam ODEs can efficiently lead to accurate solutions with low computational costs, and should prove useful to solve more complex practical applications.

Evolutionary Optimization Design Technique for Control of Solid-Fluid Coupled Force (고체-유체 연성력 제어를 위한 진화적 최적설계)

  • Kim H.S.;Lee Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.503-506
    • /
    • 2005
  • In this study, optimization design technique for control of solid-fluid coupled force (sloshing) using evolutionary method is suggested. Artificial neural networks(ANN) and genetic algorithm(GA) is employed as evolutionary optimization method. The ANN is used to analysis of the sloshing and the genetic algorithm is adopted as an optimization algorithm. In the creation of ANN learning data, the design of experiments is adopted to higher performance of the ANN learning using minimum learning data and ALE(Arbitrary Lagrangian Eulerian) numerical method is used to obtain the sloshing analysis results. The proposed optimization technique is applied to the minimization of sloshing of the water in the tank lorry with baffles under 2 second lane change.

  • PDF

Applications of artificial intelligence and data mining techniques in soil modeling

  • Javadi, A.A.;Rezania, M.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.53-74
    • /
    • 2009
  • In recent years, several computer-aided pattern recognition and data mining techniques have been developed for modeling of soil behavior. The main idea behind a pattern recognition system is that it learns adaptively from experience and is able to provide predictions for new cases. Artificial neural networks are the most widely used pattern recognition methods that have been utilized to model soil behavior. Recently, the authors have pioneered the application of genetic programming (GP) and evolutionary polynomial regression (EPR) techniques for modeling of soils and a number of other geotechnical applications. The paper reviews applications of pattern recognition and data mining systems in geotechnical engineering with particular reference to constitutive modeling of soils. It covers applications of artificial neural network, genetic programming and evolutionary programming approaches for soil modeling. It is suggested that these systems could be developed as efficient tools for modeling of soils and analysis of geotechnical engineering problems, especially for cases where the behavior is too complex and conventional models are unable to effectively describe various aspects of the behavior. It is also recognized that these techniques are complementary to conventional soil models rather than a substitute to them.

Evolutionary Learning of Mobile Robot Behaviors (이동 로봇 행위의 진화적 학습)

  • 심인보;윤중선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.207-210
    • /
    • 2002
  • 진화와 학습 사이의 상호 연관성을 연구하기 위해 인공 진화기법(artificial evolutionary algorithm)과 신경회로망(neural networks)을 이용한 학습 기법들이 사용되어 왔다. 신경 회로망 구조를 가지는 이동 로봇의 제어기의 구조와 파라미터를 결정하기 위한 방법으로 진화적 학습(evolutionary learning) 방법이 제안되었다. 제안된 방법에서 진화적 학습은 실제 로봇을 통해 on-line 방식으로 이루어지며, 장애물 회피 문제를 통해 유용성을 검증하고 진화 과정에 학습이 미치는 영향을 살펴보았다. 그리고 수학적으로 제시되기 힘든 진화 학습의 평가에 설계자의 개입을 허용하는 인터액티브 진화 알고리즘(interactive evolutionary algorithm)방법을 모색해 보았다.

A Study on Automatic Design of Artificial Meural Networks using Cellular Automata Techniques (샐룰라 오토마타 기법을 이용한 신경망의 자동설계에 관한 연구)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.88-95
    • /
    • 1998
  • This paper is the result of constructing information processing system such as living creatures' brain based on artificial life techniques. The living things are best information processing system in themselves. One individual is developed from a generative cell. And a species of this individual has adapted itself to the environment through evolution. In this paper, we propose a new method of designing neural networks using biological inspired developmental and evolutionary concept. Ontogeny of organism is embodied in cellular automata(CA) and phylogeny of species is realized by evolutionary algorithms(EAs). We call 'Evolving Cellular Automata Neural Systems' as ECANSI. The connection among cells is determined by the rule of cellular automata. In order to obtain the best neural networks in given environment, we evolve the arragemetn of initial cells. The cell, that is a neuron of neural networks, is modeled on chaotic neuron with firing or rest state like biological neuron. A final output of network is measured by frequency of firing state. The effectiveness of the proposed scheme is verified by applying it to Exclusive-OR and parity problem.

  • PDF