• Title/Summary/Keyword: Exciter test

Search Result 72, Processing Time 0.025 seconds

The development of the 3 axes exciter for the local structure (선박 국부구조 3 축 방향 가진 실험장치 개발)

  • Lee, Chan-Hui;Kim, Heu-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.686-690
    • /
    • 2012
  • The modal test has been carried out using the exciter machine to investigate the vibration characteristics of the hull and super structure of the ship. The conventional exciter acts only one(1) direction and the exciter should be reinstalled for different direction test, which consumes additional expense. The 3 axes exciter has been designed of which force acts three directions without reinstallation for efficient modal test of the ship. It consists of rotatable base frame structure and the clutch mechanism for the unbalances to excite three directions. And the 3 axes exciter for the local structure has been made in advance and its performance test was carried out in the laboratory. The developed 3 axes exciter shows the ability of three-directions excitation with simple operation and modal test for the various local structure of the ship will be performed.

  • PDF

Analysis on the Measured Natural Frequencies Due to the Structure-Exciter Interaction (구조물-가진기 상호작용에 의한 공진주파수 변동에 대한 해석)

  • Han, Sang-Bo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2108-2117
    • /
    • 1996
  • The purpose of this paper is to investigate the influence of the exciter attached for the measurement of natural frequencies when extracting the frequency response functions of the test structure in experimental modal analysis. The procedure is first to model the attached exciter as an additional degree of freedom system and next to verify the suggested model by experimentally extracting the natural frequencies of the test structure with various values of exciter mass, stinger stiffness and attachment position of the exciter on the test structure. It is concluded that as additional degree of freedom system which includes the natural frequency of the exciter itself and axial stiffness of stinger should be considered to quantatively define the coupling effects of structure-exciter interaction on the measured natural frequencies. It is not the mass of the exciter itself but the coupling effect of the additional degree of freedom mass-spring system consisting of exciter body and armature coil that characterizes the natural frequency deviation. Therefore, when the natural frequency of this additional mass-spring system is outside of the test frequency range, the coupling effect of structure-exciter interaction can be minimized.

Comparison of Performance of the Exciter and Impact Hammer Test for Dynamic Characteristics Analysis of Floor Slabs (건물바닥 슬래브의 동특성 분석을 위한 가진기와 Impact Hammer의 성능 비교)

  • Ahn, Sang-Kyung;Moon, Yeong-Jong;Oh, Jung-Keun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.117-120
    • /
    • 2007
  • The floor slabs of building structures are often subjected to the periodic force which is induced by vibrating machines or human activity(walking, jumping, running etc). These periodic forces cause excessive oscillation. In order to examine the dynamic characteristics of floor slabs, the dynamic characteristics test is accomplished. Generally, the Impact Hammer and Dynamic Exciter test is used to dynamic characteristics test. But the Impact Hammer test is not suitable to apply in building slabs. In this paper, It compared the performance of the Exciter and Impact Hammer test for dynamic characteristics analysis of floor slabs.

  • PDF

Development of Cable Exciting System for Evaluating Dynamic Characteristics of Stay Cables (사장교 케이블 동특성 평가를 위한 케이블 가진시스템 개발)

  • Kim, Nam-Sik;Jeong, Woon;Seo, Ju-Won;Ahn, Sang-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.424-429
    • /
    • 2003
  • As a critical member of cable-stayed bridges, stay cables play an important role of supporting the entire structure. Traffic, wind or rain-wind induced vibrations of stay cables would be a major cause of degrading both safety and serviceability of the bridge. One of the effective alternatives to solve this problem is to employ the cable dampers. In order to design the cable damper optimally. it is necessary to exactly estimate the dynamic characteristics of the existing cables. Therefore, in this study, a cable exciting system (exciter) controlled digitally was developed. And to evaluate the performance of the cable exciter developed, a solution of the differential equation of cable motion considering the exciter was derived. Using the cable exciter. sine sweeping and resonance tests on a cable model were carried out to obtain the dynamic characteristics effectively.

  • PDF

A Development of a Variable Dynamic Force Type Exciter for Modal Test of a Large Structure (대형구조물 동특성 실험을 위한 가변 동하중 가진 시스템 개발)

  • Son, S.W.;Lee, H.G.;Choi, C.H.;Kang, D.E.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.826-831
    • /
    • 2002
  • In order to investigate the dynamic characteristics of real structure, many dynamic engineer had been interested in modal test however it is not easy to perform dynamic test of large structure because of many difficulties such as unsatisfied excitation force in global mode frequency range, measurement of dynamic force and so on. Therefore. new type vibration exciter with variable stiffness support system and dynamic force was developed to provide a improved experimental environment for a large and complex structure. The developed exciter improved from two viewpoint, dynamic performance and utility convenience. its characteristics was shown in this paper.

  • PDF

Fabrication and Test of a Cell Exciter Actuated by an Electromagnetic Force for the Chondrogenic Differentiation of Mesenchymal Stem Cells

  • Park, Sin-Wook;Sim, Woo-Young;Park, Sang-Hyug;Min, Byoung-Hyun;Park, So-Ra;Yang, Sang-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.176-180
    • /
    • 2004
  • This paper presents the fabrication and test of a micro cell exciter actuated by an electromagnetic force for the study on the chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs). The micro cell exciter is designed to apply compressive loading to the alginate gel mixed with the MSCs. The magnetic cell exciter consists of an actuator component and a cartridge-type chamber component. An actuator is composed of a permanent magnet, a core and a coil. The chamber has seven PMMA wells and a cell culture Petri dish. Two types of alginate gels were stimulated by the cell exciters for 10 minutes every 12 hours for 7 days. In order to determine the expression of these matrix components during differentiation, RT-PCR analysis was performed. Collagen type II was expressed in the MSCs subjected to the compressive stimulation.

Complex Modal Testing of Asymmetric Rotors Using Magnetic Exciter Equipped with Hall Sensors

  • Lee, Chong-Won;Kim, Si-Kyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.866-875
    • /
    • 2001
  • The complex modal testing methods developed for asymmetric rotors are briefly discussed and their performances are experimentally evaluated. For the experiments, a laboratory test rotor is excited by using a newly developed, cost effective magnetic exciter equipped with Hall sensors, which measure the excitation forces. It is concluded that the exciter system is characterized by a wide bandwidth and a high resolution for both the excitation and force measurement, and that the one-exciter/two-sensor technique for complex modal testing of asymmetric rotors is superior to the standard two-exciter/two-sensor technique in terms of practicality and realization.

  • PDF

Development of a Direct Drive Type Exciter and Performance Evaluation (직접구동형 가진기의 개발 및 성능평가)

  • Kim, O-Bok;Park, Jung-Mo;Kim, Seock-Hyun
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.329-334
    • /
    • 1998
  • The purpose of this study is to design and manufacture a vibration exciter, which can be used in the education and research for the vibration engineering. For this purpose, a direct drive type vibration exciter is developed, which consists of a motor, an inverter, eccentric rotating sleeves and two excitation plates. Developed exciter is tested on some dynamic characteristics to evaluate its excitation performance. Test results show that the developed machine can excite bodies on the horisontal vibrating plates in x,y direction by the constant displacement amplitude in the frequency range below 50Hz, which confirm that the exciter can be used as a vibration testing machine in the low frequency range.

  • PDF

Analysis on the Dynamic Behavior of Shaker (가진기의 동적 거동 해석)

  • 한상보;김윤환;송장규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.81-85
    • /
    • 1997
  • It is a well known fact that the exciter used in the vibration test interacts with the test structure and thus influences the test results. A two degree of freedom model of exciter is suggested and the vibration parameters of this model is experimentally extracted. According to this experimental results, the vibration parameters of the exciter can vary with respect to the test structure as well as the stinger used in the connecting mechanism. It is also found that the vibration parameters provided by the manufacturer can not be accurate and these parameter values should be revaluated based on the test environments.

  • PDF

ATSC DTV Exciter

  • 이동두
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06b
    • /
    • pp.213-250
    • /
    • 1999
  • .8-VSB Modulator for Digital Television .ETRl's ATSC VSB EXCITER .Pre-Corrector .Field Test

  • PDF