• 제목/요약/키워드: Exhaust duct

검색결과 135건 처리시간 0.026초

가연성 배기덕트-흄 화재위험성 평가에 관한 연구 (A Study on the Fire Risk Assessment of Combustible Exhaust Duct-fume)

  • 윤여송;이영순
    • 한국안전학회지
    • /
    • 제25권1호
    • /
    • pp.32-37
    • /
    • 2010
  • When back-out & firing Process applies heat, hume is piled up in exhaust duct by organic compound and it have high dangerousness. There by, the process is happening a lot of damage that is exhaust duct fire. However we do not have certain fire dangerousness estimation and digestion countermeasure. So we need preventive measure. Back-out & firing is a process which has fine structure, electrical and mechanical characteristics, such as firing kiln and back-out kiln which has pipe line and box type. The box oven is made of heating coil, fan motor and control panel. Back-out & firing process has air circulation institution of quick ventilation type. When we operate this process for long time, fire can break out easily. Duct is made by zinc shredder. If fire breaks out in duct inside, fire by deposit fume can be dispersed easily. Accordinglym, This project estimate danger for back-out & firing process exhaust duct through real fire test. And there is purpose of study to establish preventive measure.

항공기용 배기덕트의 구조적 안정성 검토를 위한 전산유동해석 (Computational fluid analysis of Aircraft Exhaust Duct for Verification of Structural Stability)

  • 이창욱;김원철;박용석;양용준
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.606-608
    • /
    • 2017
  • 터보프롭 엔진의 배기덕트에 구조적 안정성을 검토하기 위해 유동해석을 수행하였다. 항공기의 비행조건에 따라 작용하는 추력과 전단력을 산출하기 위해 배기덕트내의 관내유동과 배기덕트 플랜지 방향의 유동을 Fluent 소프트웨어로 해석을 수행하여 추력, 전단력, 벤딩모멘트 값을 얻을 수 있었다. 해석결과, 허용 하중값을 초과하지 않음을 확인하였다.

  • PDF

열병합발전소 배기 덕트 시스템의 소음 진동 저감 (Noise and vibration reductions in exhaust duct system of cogeneration power plants)

  • 김원현;주원호;배종국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.641-646
    • /
    • 2004
  • Noise and vibration was encountered in exhaust duct system which is connected with a gas turbine and a heat recovery steam generator(HRSG) of a cogeneration power plants. Especially, these problems occurred when water was added to the fuel injection to reduce NOx contents of the exhaust gas. Through the cavity mode analysis and measurements, It was concluded that these problems occurred due to the acoustic resonance between the duct cavity mode and the excitation force induced by turbulent gas flow during water injection. To reduce the noise and vibration, optimal baffle plate to change the cavity mode was installed inside of duct and noise levels of about 8 dB(A) are reduced in duct system. The effects of baffle plate and guide vane to the HRSG or inlet duct vibration were also evaluated and it was verified that there is no relation to the resonance phenomena. So, vibration of inlet duct was easily reduced by the reinforcement of structures.

  • PDF

500MW 발전소에서 협소 공간 내 대형 덕트 설계의 최적화 (Optimization of the Design of Large Ducts with the Space Constraint in 500MW Power Plant)

  • 황우현;이경옥;조용기
    • 한국환경과학회지
    • /
    • 제18권7호
    • /
    • pp.755-765
    • /
    • 2009
  • Some sections of the exhaust system to determine the shape of the duct is to suffer the difficulties by space constraints to install new equipment of the environment post-treatment for existing operation of the power plants. In this paper the large duct in flue gas desulfurization equipments of the 500MW coal-fired power plant on the current operation is numerically analyzed from induced draft fan exit to booster up fan inlet section which is in the narrow space of the exhaust system with four times bending and is connected to emergency duct to bypass the exhaust gas on the emergency operation. The procedure and method using computational fluid dynamics are proposed to maintain the stability of the guide vane with the uniform flow and a minimum pressure loss of exhaust gas in the case of normal and emergency operation between the direction of the flow of exhaust gas duct at different.

공동주택 보일러 연소배기가스의 실내유입에 관한 수치적 연구 (A Numerical Study on Flow around Exhaust Ducts of Flue Gas from Apartment Heating Boiler)

  • 박외철;정락기
    • 설비공학논문집
    • /
    • 제15권7호
    • /
    • pp.557-562
    • /
    • 2003
  • Flue gas from apartment heating gas boiler is exhausted outside through an exhaust duct mounted horizontally in a vertical row on the wall. The flue gas includes nitrogen-oxides (NOx) and carbon monoxide. To investigate the possible entrainment of the flue gas into the apartments through the windows, a large eddy simulation (LES) based numerical method is utilized. Distribution of the velocity intensity and temperature around the exhaust ducts is presented for three numerical parameters: exhaust velocity, temperature of the flue gas, and exhaust duct length. The flow field visualized with particles inserted at the ends of the ducts is also presented. The results clearly show that the exhausted flue gas may flow into the apartments when the windows are open.

초고층 공동주택의 주방.욕실 배기 풍속을 풍력발전에 활용하는 방안 (A Study on the Wind Power Generation Using Vertical Exhaust Air Duct of the High-Rise Apartments)

  • 이용호;김성용;황정하;박진철
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.1-10
    • /
    • 2012
  • The purpose of this study was to promote the utilization of wind velocity of kitchen and bathroom exhaust ducts for wind power generation in high-rise apartments. The research content can be summarized as follows: 1) Nine high-rise apartments were examined for the installation of kitchen and bathroom exhaust ducts located in the pipe shaft (PS) section. After selecting simulation candidates, a simulation was performed with the STAR-CCM+ Ver 5.06 program. 2) Of nine high-rise apartments, seven had kitchen and bathroom exhaust ducts, whose cross section was in the range of $0.16m^2{\sim}0.4m^2$. The area ratio between the exhaust ducts and PS section (cross section of exhaust duct/area of PS section ${\times}$ 100) was on average 3.2%. 3) The simulation results were analyzed. As a result, the smaller cross section kitchen and bathroom exhaust ducts had, the more advantages there were for increasing exhaust wind velocity. If an out air inlet duct is installed to the old kitchen and bathroom exhaust ducts, it will increase exhaust wind velocity by 3.01~3.98m/s and contribute to the proper wind velocity level (3.0m/s). 4) When the simultaneous usage rate between the kitchen and bathroom exhaust fan increased from 20% to 60%, exhaust wind velocity increased. The "entire house holds" condition for exhaust fan operation provided more even exhaust wind velocity than the "some house holds" condition. 5) Exhaust wind velocity increased in the order of amplified (T-3), induced (T-2) and vertical (T-1) top of kitchen and bathroom exhaust ducts. Of them, the amplified type (T-3) was under the least influence of external wind velocity and thus the most proper for kitchen and bathroom exhaust duct tops.

공동주택의 세대별 균등 배기량을 확보 하는 제어방법에 관한 연구 (Control Method to Ensure Uniform Exhaust Function by Household of Apartment House)

  • 권용일
    • 설비공학논문집
    • /
    • 제29권12호
    • /
    • pp.628-637
    • /
    • 2017
  • This study was conducted to present an effective control method for the common duct system to uniformly discharge volume flow rate exhausted from the kitchen and bathroom of each household in an apartment regardless of the position of household. Since the common duct system is installed vertically and the ventilator is installed in the terminal, the static pressure of each household decreases when vertical height increases. Therefore, the volume flow rate exhausted from each household is different. In order to improve such a phenomenon, a constant air volume damper shall be installed in a branch duct coupled with a common vertical duct system. The selected ventilator should also be able to handle the maximum volume flow rate considering diversity factor. Therefore, a uniform volume flow rate must be exhausted from all households where the hood is operated. This paper mainly focuses on suggestion of an optimum exhaust control method by comparing exhaust performance of each household according to the presence or absence of a constant air volume damper.

초고층 공동주택의 입상덕트 환기시스템에서 외기조건과 작동조건에 따른 환기성능평가 (Ventilation Performance According to Outdoor and Operating Conditions of the Vertical Exhaust Duct System in High Riser Public Houses)

  • 김영배;김재홍;성재용;이명호
    • 설비공학논문집
    • /
    • 제23권2호
    • /
    • pp.139-146
    • /
    • 2011
  • The ventilation performance of a vertical exhaust duct system in the high riser public house has been evaluated by a commercial software, Fluid Flow, which solves pressure losses through the duct system including bathroom fans and a hybrid roof fan. During the numerical simulations, outdoor wind condition and stack effects in summer and winter were considered as well as the operating conditions of a basement damper and the roof fan. The results show that the bathroom ventilation in summer is the most unsatisfactory. The opening of the basement damper has a problem that the polluted air in the lower floors is exhausted to the underground parking lot, not to the rooftop. If the basement damper is closed, the exhaust flow rate in the lower floors is not sufficient due to the strong flow resistance in the long vertical duct even though the roof fan is under operating.

지하철 모사터널에서 에어커튼을 이용한 환기구의 배기효율 및 미세입자 농도 변화 연구 (The Study on Changes of Exhaust Efficiency and Fine Particle Concentration at a Ventilation Opening by a Air Curtain Flow in a Subway Model Tunnel)

  • 한방우;김학준;김용진;정상현;김용민;김종률
    • 한국대기환경학회지
    • /
    • 제27권5호
    • /
    • pp.614-622
    • /
    • 2011
  • In this study, a new tunnel ventilation method with a high velocity air curtain flow has been investigated for improving the ventilation exhaust efficiency and removing air pollutants in subway tunnels. At upper or lower position right downstream of a main duct connected with a ventilation opening, air curtain flows were suppled into the main duct where the air flow velocity was in the range of 2~6 m/s. Exhaust efficiency was monitored for both cases with and without air curtain flow for different air velocities, locations and injection angles of the air curtain. Particulate matter concentrations (PM10, PM2.5 and PM1.0) were also checked at both the main duct and ventilation opening before and after supplying air curtain flows. Lower air velocity of the main duct flow, higher air velocity of the air curtain led to higher exhaust efficiency and the air curtain condition of 30..inclined injection toward the main flow showed the maximum exhaust efficiency. The exhaust efficiency of about 24% without the air curtain could be improved to about 34% after using the air curtain flow. PM concentration decreased at the main duct and increased at the ventilation opening after using the air curtain flow. Therefore, the suggested method to use air curtain flows in tunnels will be probably one of the promising tools to reduce air pollutants in subway tunnels.

스마트무인기 엔진 배기가스가 기체에 미치는 영향에 관한 수치적 연구 (Numerical Study for the Effect of Engine Exhaust Gas on the Airframe of Smart UAV)

  • 이창호;김철완;김재무
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.464-467
    • /
    • 2008
  • An ejector is designed for the purpose of engine bay cooling. The primary flow of the ejector is the exhaust gas of the PW206C turboshaft engine. The mass flow of secondary flow is calculated by using the approximate analytic equation. And the effect of exhaust gas flow on the fuselage surface is investigated by using the Fluent Code. Three types of exhaust duct shape were compared in the viewpoint of surface temperature and aerodynamic drag. As a result, exhaust duct shape P3 shows minimum interference of exhaust gas and fuselage and minimum increment of drag among the three candidate shapes.

  • PDF