• Title/Summary/Keyword: Exposed Type Column Base

Search Result 7, Processing Time 0.023 seconds

Shear behavior of exposed column base connections

  • Cui, Yao
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.357-371
    • /
    • 2016
  • Column base connections are critical components in steel structures because they transfer axial forces, shear forces and moments to the foundation. Exposed column bases are quite commonly used in low- to medium-rise buildings. To investigate shear transfer in exposed column base plates, four large scale specimens were subjected to a combination of axial load (compression or tension) and lateral shear deformations. The main parameters examined experimentally include the number of anchor rod, arrangement of anchor rod, type of lateral loading, and axial force ratio. It is observed that the shear resisting mechanism of exposed column base changed as the axial force changed. When the axial force is in compression, the resisting mechanism is rotation type, and the shear force will be resisted by friction force between base plate and mortar layer. The specimens could sustain inelastic deformation with minimal strength deterioration up to column rotation angle of 3%. The moment resistance and energy dissipation will be increased as the number of anchor rods increased. Moreover, moment resistance could be further increased if the anchor rods were arranged in details. When the axial force is in tension, the resisting mechanism is slip type, and the shear force will be resisted by the anchor rods. And the shear resistance was reduced significantly when the axial force was changed from compression to tension. The test results indicated that the current design approach could estimate the moment resistance within reasonable acceptance, but overestimate the shear resistance of exposed column base.

A Study on the Dynamic Behavior Characteristics of Steel Column Base using Energy Absorbtion High Strength Bolt (에너지 흡수형 고력볼트를 사용한 철골 주각부의 동적 거동 특성에 관한 연구)

  • Lee, Seung-Jae;Park, Jae-Seong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.3
    • /
    • pp.67-76
    • /
    • 2011
  • Column base is very important part of steel structure because it transmits load to foundation in structure. Column base which is used frame construction in the inside and outside of the country is distributed into exposed-type, concrete encased and imbeded-type. Exposed-type column base is most profitable, if consider reuse and recycle of elements first of all. In this study, we proposed a new style exposed-type column base improved in performance for construction work and mechanical performance.

Rotational behavior of exposed column bases with different base plate thickness

  • Cui, Yao;Wang, Fengzhi;Li, Hao;Yamada, Satoshi
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.497-507
    • /
    • 2019
  • Exposed column base connections are used in low- to mid-rise steel moment resisting frames. This paper is to investigate the effect of the base plate thickness on the exposed column base connection strength, stiffness, and energy dissipation. Five specimens with different base plate thickness were numerically modelled using ABAQUS software. The numerical model is able to reproduce the key characteristics of the experimental response. Based on the numerical analysis, the critical base plate thickness to identify the base plate and anchor rod yield mechanism is proposed. For the connection with base plate yield mechanism, the resisting moment is carried by the flexural bending of the base plate. Yield lines in the base plate on the tension side and compression side are illustrated, respectively. This type of connection exhibits a relatively large energy dissipation. For the connection with anchor rod yield mechanism, the moment is resisted through a combination of bearing stresses of concrete foundation on the compression side and tensile forces in the anchor rods on the tension side. This type of connection exhibits self-centering behavior and shows higher initial stiffness and bending strength. In addition, the methods to predict the moment resistance of the connection with different yield mechanisms are presented. And the evaluated moment resistances agree well with the values obtained from the FEM model.

Exposed Reinforced Concrete-Filled Steel Tubular (RCFST) column-base joint with high-strength

  • Mou, Ben;Wang, Zian;Qiao, Qiyun;Zhou, Wanqiu
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • The weld quality has always been an important factor affecting the development of exposed CFT column-base joint. In this paper, a new type of exposed RCFST column-base joint is proposed, in which the high strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens, the varying axial force ratio (0, 0.25 and 0.5), were tested under cyclic loadings. In addition, the bending moment capacity, energy dissipation capacity and deformation capacity of column-base joints were clarified. The experimental results indicated that the axial force ratio increases the stiffness and the bending moment and improves the energy dissipation capacity of column-base joints. This is because a large axial force can limit the slip between steel tubular and infilled concrete effectively. The specimens show stable hysteresis behavior.

Evaluation on Interaction Surface of Plastic Resistance for Exposed-type Steel Column Bases under Biaxial Bending

  • Choi Jae-hyouk;Ohi Kenichi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.826-835
    • /
    • 2005
  • Exposed-type steel column bases are used widely in low-rise building construction. Numerous researchers have examined methods to identify their stiffness and strength, but those studies have heretofore been restricted to in-plane behaviors. This paper presents an experimental investigation of inelastic behaviors of square hollow section (SHS) steel column bases under biaxial bending. Two types of failure modes are considered : anchor bolt yielding and base plate yielding. Different pinching effects and interaction surfaces for biaxial bending are observed for these two modes during bi-directional quasi-static cyclic loading tests. Differences are elucidated using limit analyses based on a simple analytical model.

Dynamic Characteristic Identification on Steel Column bases Installed in Pendulum-type Earthquake Response Observatory

  • Choi, Jae-Hyouk;Ohi, Kenichi
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2225-2235
    • /
    • 2004
  • An observatory termed 'Steel Swing' has been developed, where a 15000 kg pendulum is hanged from a stiff steel frame. A building element can be tested after inserted between the pendulum and the frame. Free vibration, forced vibration tests and earthquake monitoring were performed on an exposed-type steel column base. The response records monitored during natural earthquakes were used to identify the vibration property of the specimen. Identified system gain was approximated by a theoretical gain of linear SDOF system, and the response calculated based on such a linear system agrees with the monitored response fairly well. This research technique can be applied to check the behaviors of new materials and new details of connections and the safety of non-structural elements as well.

Experimental Study on Flexural Capacity of Column Base Plate Made of Cast Steel (주강제 노출형 철골주각부의 휨 성능에 관한 실험 연구)

  • Lee, Sung Ho;Park, Hyung Chul;Oh, Bo Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.93-102
    • /
    • 2005
  • Manufacturing conventional column base plate requires much manpower and time. In this research, a new method for constructing column base plate is introduced to improve on conventional methods through the use ofcast steel that is available for adjusting base plate thickness and enlarging base plate stiffness. The main purposes include reducing welding work, enlarging base plate stiffness, and clarifying the stress flow. Also, construction convenience and improvement in quality can be expected. For developing this cast steel base plate, test specimens of conventional and cast steel base plates are made and tested to analyze strength and stiffness. Also, the efficiency for long-term use is checked by fatigue tests. From these comparative tests, cast steel base plates have the same strength and stiffness as conventional base plates.