• Title/Summary/Keyword: External electric field

Search Result 229, Processing Time 0.025 seconds

The Effect of External DC Electric Field on the Atmospheric Corrosion Behaviour of Zinc under a Thin Electrolyte Layer

  • Liang, Qinqin;YanYang, YanYang;Zhang, Junxi;Yuan, Xujie;Chen, Qimeng
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.54-59
    • /
    • 2018
  • The effect of external DC electric field on atmospheric corrosion behavior of zinc under a thin electrolyte layer (TEL) was investigated by measuring open circuit potential (OCP), cathodic polarization curve, and electrochemical impedance spectroscopy (EIS). Results of OCP vs. time curves indicated that the application of external DC electric field resulted in a negative shift of OCP of zinc. Results of cathodic polarization curves measurement and EIS measurement showed that the reduction current of oxygen increased while charge transfer resistance ($R_{ct}$) decreased under the external DC electric field. Variation of OCP negative shift, reduction current of oxygen, and $R_{ct}$ increase with increasing of external DC electric field strength as well as the effect of external DC electric field on double-layer structure in the electrode/electrolyte interface and ions distribution in thin electrolyte layer were analyzed. All results showed that the external DC electric field could accelerate the corrosion of zinc under a thin electrolyte layer.

Filtration Performance of Fibrous Air Filter under External Electric Field using Insulated Electrodes (외부전기장 적용 섬유상 에어필터의 절연 전극 사용에 따른 여과특성)

  • Ji, Sung-Mi;Sohn, Jong-Ryeul;Park, Hyun-Seol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.675-687
    • /
    • 2012
  • Applying an external electric field across air filter media is one of methods to improve the filtration performance. Metal wire meshes have been commonly used as electrodes situated on both sides of a thick filter pad. For a thin filter medium a short circuit, known as the biggest drawback for applying an external electric field to air filter, can occur at the closest point between electrodes. In this study several types of insulated meshes were prepared by coating #50 meshes with a dielectric material, Nylon 66, and the filtration property of air filter was evaluated at the presence of external electric field using those insulated meshes as electrodes and compared with that of filters using bared meshes. The collection efficiency of tested filter was increased from 78% to 95% for singly charged 100 nm particles by application of external electric field. As a result, there was no significant difference in collection efficiency between filters with insulated and bared electrodes. Similar results could be also seen from the tests using polydisperse particles. Finally, through this study, we found that the insulation of mesh electrodes doesn't affect the filtration performance of fibrous air filter under external electric field.

Growth of ZnO Nanorod with High-quality Assisted by an External Electric Field (외부 전계 인가를 통한 고품질 ZnO 나노로드 성장)

  • Son, Min-Kyu;Seo, Hyun-Woong;Kim, Soo-Kyoung;Hong, Na-Yeong;Kim, Byung-Man;Park, Song-Yi;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1641-1645
    • /
    • 2012
  • In this study, the ZnO nanorod is grown on the seed layered glass substrate by applying an external electric field to fabricate the ZnO nanorod with the high quality and to increase the yield of the ZnO nanorod. It is possible to grow the definite and clear hexagonal ZnO nanorod as the cathode of the high voltage is connected to the side of the seed layered glass substrate and the anode is connected to the opposite side because more $Zn^{2+}$ ions are located around the ZnO seed layer and are accumulated easily due to the external electric field. As a result, it is succeeded to fabricate the definite hexagonal ZnO nanorod having better structural characteristics by applying the external electric field during the growth process. Therefore, it is demonstrated that the external electric field is effective to fabricate the high quality ZnO nanorod without changing any composition of the ZnO nanorod.

Temperature and Electric Field Effect on Proton Transfer in Adenine-thymine

  • Zhang, Guiqing;Xie, Shijie
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3532-3534
    • /
    • 2014
  • In theoretical simulations of proton transfer in DNA, environmental factors nearly have not been considered. In our calculations, using QM/MM method on the basis of CP2K, proton transfer on adenine-thymine base pair is studied in water, at wide scope temperature, and under the external electric field. Our results indicate that the external electric field induces the proton transfer at room temperature, and its intensity and temperature have some effect on hole localization and proton transfer.

Research on a transport characteristic of Bi-2223/Ag superconducting tapes with time-varying magnetic field (시변자장 영향에 따른 Bi-2223/Ag 선재의 통전 특성에 대한 연구)

  • Choi S.J.;Lee S.J.;Kim H.J.;Sim K.D.;Cho J,W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.59-62
    • /
    • 2006
  • For electric power applications of Bi-2223/Ag superconducting tapes, a transport characteristic is important issue. A transport characteristic is strongly depends on the magnitude and direction of external time-varying magnetic field. To verify a effect of external magnetic field, we manufactured a prototype magnet and obtained transport characteristics with respect to the magnitude, the direction and the frequency of external magnetic field. The data acquired in this paper will be used as a source for the study of HTS electric power applications which is supposed to carry on.

Influence of external magnetic field on HTS cable conductor (외부 자계 인가에 따른 고온초전도 케이블 도체의 ?치 특성)

  • Seong Woo Yim;Si Dole Hwang;Je Myoung Oh;Byung Sung Han
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.284-287
    • /
    • 2003
  • Quench characteristics of HTS cable conductor due to external magnetic field were investigated. Firstly, the influence of critical characteristics of HTS tape on locally applied magnetic field was examined. Secondly, critical current of HTS tapes, which are wound on surface of former, were measured respectively, before the experiment for quench characteristics, Finally, 50mT and 100mT were applied to HTS cable conductor and quench characteristics were investigated through V-I curves. As the results, same as the result of HTS tape, HTS cable conductor showed strong dependence on external magnetic field with direction and magnitude.

  • PDF

In situ Electric-Field-Dependent X-Ray Diffraction Experiments for Ferroelectric Ceramics (강유전 세라믹의 전기장 인가에 따른 in situ X-선 회절 실험)

  • Choi, Jin San;Kim, Tae Heon;Ahn, Chang Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.431-438
    • /
    • 2022
  • In functional materials, in situ experimental techniques as a function of external stimulus (e.g., electric field, magnetic field, light, etc.) or changes in ambient environments (e.g., temperature, humidity, pressure, etc.) are highly essential for analyzing how the physical properties of target materials are activated/evolved by the given stimulation. In particular, in situ electric-field-dependent X-ray diffraction (XRD) measurements have been extensively utilized for understanding the underlying mechanisms of the emerging electromechanical responses to external electric field in various ferroelectric, piezoelectric, and electrostrictive materials. This tutorial article briefly introduces basic principles/key concepts of in situ electric-field-dependent XRD analysis using a lab-scale XRD machine. We anticipate that the in situ XRD method provides a practical tool to systematically identify/monitor a structural modification of various electromechanical materials driven by applying an external electric field.

Surface hydrophilicity modification of PVDF membranes with an external electric field in the phase inversion process

  • Shi, Bao-Li;Su, Xing;He, Jing;Wang, Li-Li
    • Membrane and Water Treatment
    • /
    • v.6 no.5
    • /
    • pp.351-363
    • /
    • 2015
  • To increase the surface hydrophilicity of PVDF membranes, in this paper, an electric enhancing method was adopted to treat PVDF nascent membranes during the phase inversion process. It was found that when PEG 600 was taken as the additive, the surface water contact angle of the PVDF membrane treated under 2 kV electric field was decreased from $84.0^{\circ}$ to $65.7^{\circ}$. The reason for the surface elements change of the PVDF membranes prepared under the electric field was analyzed in detail with the dielectric parameters of the polymer dope solutions. Results from BSA adsorption experiment showed that the antifouling ability of the external electric field-treated membranes was distinctly enhanced when compared with that of the untreated membranes. The amount of BSA adsorbed by the treated membranes was lower by 38-43%. Compared with the common chemical reaction methods to synthesize hydrophilic additives or membrane materials, the electric field-assisted processing method did not involve any additional chemical synthesis process and it was capable of realizing better hydrophilicity.

Electrostatic field of the semi-infinite electric dipole layer as (a) dual analogy to the Ampere's law (b) capacitor's fringing field (반무한 전기 쌍극자층에 의한 정전계 해석과 앙페르 법칙에 자계와 커패시터의 누설 전계간의 이중성 유사 관계)

  • Cho, Young-Ki;Ahmad, Sheikh Faisal;Son, Hyeok-Woo;Kim, Hyun-Deok;Yoo, Hyoung-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.606-611
    • /
    • 2012
  • The similarity, analogy and equivalence between the phenomenon due to electric and magnetic dipoles have been discussed in the open literature for different situations. Here we are presenting the numerical proof of the trajectory of leakage electric field due to a semi-infinite electric dipole layer in the external periphery and the electric field in the space between oppositely charged surfaces. The result is also valid for the fringing electric field of a parallel plate capacitor. The result is also proved to be a dual of Amp$\grave{e}$re's law in the electrostatics due to a semi-infinite electric dipole layer.

A Pathway to Microdomain Alignment in Block Copolymer/Nanoparticle Thin Films under Electric Field

  • Bae, Joonwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2689-2693
    • /
    • 2014
  • The control over microstructure in block copolymer thin films using external electric fields has become an interesting research topic. In this article, the effect of nanoparticle on the microdomain alignments in block copolymer (polystyrene-b-poly(2-vinylpyridine)/nanoparticle (Au) thin films under electric fields has been examined with transmission electron microscopy. The homogeneous dispersion of Au nanoparticles into the block copolymer matrix was achieved by surface modification of nanoparticles with compatible ligands. Compared with the phenomenon seen in the pristine block copolymer thin films, a peculiar alignment behavior was observed in the block copolymer/nanoparticle hybrid thin films under electric fields. In addition, the different pathways observed in the pristine and nanoparticle incorporated block copolymer thin films were also monitored as a function of exposure time. This work can provide the fundamental information for understanding microdomain alignment in block copolymer/nanoparticle thin films under external electric fields.