• Title/Summary/Keyword: Extinguishing concentration

Search Result 52, Processing Time 0.023 seconds

A Study on Measuring of Fire Extinguishing Concentration for Organic Material Using Novec (노벡을 이용한 유기물의 소화농도 측정에 관한 연구)

  • Lim, Woo-Sub;SaKong, Seong-Ho;Jung, Jong-Jin;Nam, Dong-Gun;Choi, Kenu-Joo;An, Sang-Su;Kim, Jong-Won
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.456-460
    • /
    • 2008
  • This study was on basic step to develop a good clean extinguishing agent. In order to get a satisfactory result, we tested fire extinguishing ability using Novec which is inert gas. In study used to Cup Burner Test its made by international standard ISO-14520 regulations of gaseous extinguishing agent ability test. The finding is that a new clean agent, Novec has a very efficient extinguishing ability in a state of gas.

  • PDF

An Experimental Study on the Extinguishing Performance of Sprinkler Heads according to Discharge Coefficient (스프링클러 헤드의 방수상수에 따른 소화성능에 관한 실험적 연구)

  • Hur, Min Noung;Shin, Chang Sub
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.32-38
    • /
    • 2018
  • The sprinkler system is a basic fire extinguishing system widely used, but there is a lack of quantitative assessment of its performance. In this study, to evaluate the fire extinguishing performance of the sprinkler head according to the discharge coefficients, experiments were conducted. Experimental sprinkler heads were selected with heads having K50, K80 and K115 water discharge coefficients, and the fire source was assumed to be an indoor fire in Class A Model 1. As experimental results, the time required for the fire chamber to cool down to $200^{\circ}C$ was 26 seconds for the K115 head, 414 seconds for the K80 head, and 481 seconds for the K50 head, so the cooling time of the K115 head was decreased by 94.5% compared to K50 head. In the case of restoring the oxygen concentration to 15%, the K115 head did not decrease below the oxygen concentration of 15%, and the K80 head took 145 seconds and the K50 head took 484 seconds. The lowest oxygen concentration in the fire chamber was 16.1% for the K115 head, 14.33% for the K80 head, and 11.28% for the K50 head, indicating that the K115 head was superior to the K80 and K50 heads by 13.1% and 43.7%, respectively. As the experimental results show, there is big difference in the extinguishing performance depending on the discharge coefficients of the sprinkler head. Therefore, in designing the sprinkler system, the discharge coefficients of the sprinkler head should be selected considering the heat release rate at the installation site and the fire extinguishing characteristics of sprinkler head.

Extinguishment of n-heptane Pool Fire by Water Mist Containing Alkali Metal Agent (알칼리 금속염을 함유한 미분무수의 헵탄 Pool Fire 소화)

  • Park, Jae-Man;Shin, Chang-Sub
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.105-111
    • /
    • 2005
  • An experimental study is performed for extinguishing of n-heptane pool fire by water mist containing potassium acetate as a fire suppression additive. Water mist was generated by a single pressure nozzle in a small-scale chamber. The drop size distribution of water mist was measured using laser diffraction(Malvern particle sizer). The flame temperature, oxygen concentration and carbon monoxide concentration were measured. In case of using additives, the fire extinguishing time was shorter than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing additives was increased. And also dissociated metal atoms, potassium, were reacted as a scavenger of the major radical species OH, H which were generated for combustion process. Moreover, at a high pressure of 4MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.

A Study on the Performance Prediction of Fire Extinguish System in Aircraft Engine Bay (항공기 엔진베이 내 소화장치 성능예측을 위한 연구)

  • Park, Young-Ha;Kim, Hyung-Sik;Kim, Jin-Han;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.718-725
    • /
    • 2012
  • Fuel or oil which is leaked into the aircraft engine bay can make a fire when it is contacted to the engine surface of hot temperature. In order to avoid fire, the fire extinguish system should be designed so that the extinguishing agent is quickly injected and its concentration keeps higher in the fire protection region. FAA requires that the extinguishing agent injected within the fire protection region should be sustained longer than 0.5 second on keeping a higher concentration than 6%. For developing a fire protection system satisfying the FAA regulation, numerical and experimental studies for the injection time and the concentration of the extinguishing agent were conducted. These results showed similar trend for the injection time or concentration, but the data acquisition was delayed due to the response of the sensors in the experiment.

Combustion Retardation Effects of Metal Salts Using Impregnation Method (함침법을 이용한 금속염의 연속 억제 효과)

  • Song, Young-Ho;Kang, Min-Ho;Chung, Kook-Sam
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.77-80
    • /
    • 2004
  • The purpose of this study was to examine effects of combustion retardation for paper filter impregnated metal salts by measurement of extinguishing concentration, CO concentration, and limiting oxygen index(LOI, ASTM D 2863). And thermal stability analysis using DSC was carried out. In case of extinguishing concentration, $NH_4H_2PO_4$ showed excellent effect of combustion retardation. The result of LOI measurement showed that metal salts possessed good effect of combustion retardation. And thermal analysis using DSC showed that these metal salts possessed thermal stability. In case of CO concentration, CO concentration was increasing because of imperfect combustion process due to combustion retardation effect of metal salts.

A Study on the Flame Extinguishing Characteristics of Inerting Gaseous Agents (불활성가스계 소화약제의 불꽃소화 특성에 관한 연구)

  • Kim, Sung-Min;Shin, Chang-Sub;Park, Jae-Man
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.148-150
    • /
    • 2008
  • Halon gas agent has been widely used as the extinguishing agent for B class and C class fires because of its excellent extinguishing power. But Halon was found to contribute to the ozone layer destruction, eventually Halon designated as one of ozone-layer-destroying materials in the Montreal Protocol in 1987, In this study, in the context of such researches, we measured the characteristics of flame concentrations of inert gaseous agents by Cup-burner method.

  • PDF

Extinguishment of Liquid Fuel Fire by Water Mist Containing Additives

  • Park, Jae-Man;Won, Jung-Il;Shin, Chang-Sub
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.24-29
    • /
    • 2005
  • An experimental study was presented for extinguishing characteristics of liquid fuel fire by water mist($Dv_{0.99}{\leq}200{\mu}m$) containing potassium acetate and sodium acetate trihydrate. To evaluate the extinguishing performance of water mist containing additives, the evaporation characteristics of a water droplet on a heated surface was examined. The evaporation process was recorded by a charge-coupled-device camera. Also, small-scale extinguishing tests were conducted for n-heptane pool fire in ventilated space. During the experiments, flame temperatures were measured, and concentrations of oxygen and carbon monoxide were analyzed by a combustion gas analyzer. The average evaporation rate of water droplet containing additives was lower than that of pure water at a given surface temperature and decreased with the concentration increase due to the precipitation of salt in the liquid-film and change of surface tension. In case of using additives, the fire extinguishing times was shorter than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing additives was increased. And also dissociated metal atoms, potassium or sodium, were reacted as a scavenger of the major radical species OH, H which were generated for combustion process. Moreover, at a high pressure of 4 MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.

An Experimental Study on the Behavior of Liquid Fuel Flames in the Confined Space (밀폐공간에서 액체연료 화염의 거동에 관한 실험적 연구)

  • Jeon, Kil Song;Hwang, Ji Hyun;Lee, Tea Won
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.87-93
    • /
    • 2021
  • Modern society shows rapid growth that is different from that of the development of existing technologies. The development of these technologies has led to the tendency of buildings to become dense, large and advancing. Regarding fire hazards, the possibility of large-scale fires causing fatal damage, due to the rapid spread of fire, increases. Therefore, for this reason, fire defense, i.e. detection and fire extinguishing facilities, in buildings are essential and well applied. But there are always limitations to that. Based on this reason, we would like to suggest the introduction of a new concept of a fire safety system. The method presented here is not only to use a single system for fire detection and fire extinguishing systems but to jointly use it in the environment and energy management fields within the building. However, an important step is required before introducing a system of these technologies. The fire extinguishing method proposed by this system is a method of extinguishing by blocking oxygen flowing into the space where the fire occurred. However, a sufficient basis is needed for this system to be applied in practice. Therefore, in this study, we intend to conduct a preliminary experiment to introduce the new concept of fire detection and extinguishing. The experiment used ethanol with a relatively simple combustion reaction and a high possibility of complete combustion. As a result, it was confirmed how the internal values changed during a fire using ethanol. Resultingly, we obtained the internal oxygen concentration and internal environmental changes according to the initial flame size. Lastly, the data accumulated in this study can be used as data for application in an automatic fire extinguishing system.

An Experimental Study on the Determination of the Flow Rate for a Feasible $N_2$ Generator to Extinguish the Fire (소화성능이 있는 질소발생기의 방사량 결정에 관한 실험적 연구)

  • Jang, Young-Keun;Kim, Duk-Joo;Suh, Byung-Taek
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.54-60
    • /
    • 2010
  • An experimental study has been carried out to determine the flow rate for a feasible N2 generator to extinguish the fire, and this study analogized the correlations to determine the flow rate for $N_2$ generator considered an Oxygen concentration, protected enclosure, discharging pressure and discharging time. We manufactured simple protected enclosure for analyzing fire-extinguishing performance of the $N_2$ generator. As a $N_2$ gas is exhausted on protected enclosure, a various of Oxygen concentration is measured to analyze fire-extinguishing performance experimentally. The correlations determined as an uncertainty analysis for the Oxygen concentration deviations of the theoretical and experimental value. The analogized correlations is Q = (21 $\times$ V)/($O_2+{\zeta}{\cdot}P$)-V. In case of $300m^3$ protected enclosure, 0.8 MPa discharging pressure and $40m^3$/min $N_2$ flow rate, the Oxygen concentration is decreased below 15% within 3 minutes.

The Verify of Environmental Toxicity of Foam Extinguishing Agents by Fish-Acute Toxicity Test (포소화약제의 어류급성독성 시험을 통한 환경독성 검증)

  • Lee, Jungyun;Kang, YoungJin;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.51-55
    • /
    • 2015
  • There are various studies on the fire suppression process but the study on second pollution from fire products is not enough yet. Therefor, in this study verify that environmentally-friendly properties($LC_{50}$) of foam extinguishing agent with increases its amount used through with Fish-Acute Toxicity Test using a fish named Misgurnus anguillicaudatus that is appointed by OECD Test Guideline. In conclusion, proven that environmentally friendly properties of the agent of hoseo university through 16 times of LC50 than that of market.