• Title/Summary/Keyword: Eyring-Halsey non-Newtonian model

Search Result 2, Processing Time 0.018 seconds

Stress Relaxation of Poly(methyl acrylate)-Poly(acrylonitrile) Copolymers (Poly(methyl acrylate)-Poly(acrylonitrile) 공중합체의 응력완화)

  • Kim, Nam-Jeong
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.223-230
    • /
    • 2012
  • The rheological parameters of poly(methyl acrylate)-poly(acrylonitrile) copolymers were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Eyring-Halsey non-Newtonian model. The experimentals of stress relaxation were carried out using the tensile tester with the solvent chamber. The determination of rheological parameters was performed from computer calculation. It was observed that the rheological parameters of these copolymer samples are directly related to the self diffusions and viscosities and activation energies of flow segments.

Thermodynamic Properties and Self Diffusions from Rheological Parameters of Eyring-Halsey Model (Eyring-Halsey 모델의 유동파라메타로부터 열역학 성질과 자체 확산)

  • Kim, Nam Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.3
    • /
    • pp.251-257
    • /
    • 2014
  • The stress relaxation of poly(methyl acrylate)-poly(acrylonitrile) copolymer samples were carried out in air and distilled water at various temperatures using the tensile tester with the solvent chamber. The rheological parameters were obtained by applying the experimental stress relaxation curves to the theoretical equation of the Eyring-Halsey non-Newtonian model. The self diffusion, hole volume, viscosities, and thermodynamic parameters of copolymer samples were calculated from rheological parameters and crystallite size in order to study of flow segments in amorphous region. It was observed that the rheological parameters of these copolymer samples are directly related to the self diffusion, hole volume, viscosities, and thermodynamic parameters of flow segments.