• Title/Summary/Keyword: FDM

Search Result 631, Processing Time 0.023 seconds

Strength Prediction Model of Rapid Prototyping Parts - Fused Deposition Modeling (FDM) (쾌속조형재료의 강도예측모델 - Fused Deposition Modeling (FDM))

  • 안성훈;이선영;백창일;추원식
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.38-43
    • /
    • 2002
  • Rapid Prototyping(RP) technologies provide the ability to fabricate initial prototypes from various model materials. Stratasys' Fused Deposition Modeling(FDM) is a typical RP process that can fabricate prototypes out of plastic materials, and the parts made from FDM were often used as load-carrying elements. Because FDM deposits materials in about 300$\mu$m thin filament with designated orientation, parts made from FDM show anisotropic material properties. In this paper an analytic model was proposed to predict the tensile strength of FDM parts. Applying the Classical Lamination Theory, which was developed for laminated composite materials, a computer code was implemented. Tsai-Wu failure criterion was added to the code to predict the failure of the FDM parts. The tensile strengths predicted by the analytic model were compared with experimental data. The data and prediction agreed reasonably well to prove the validity of the model. In addition, a web-based advisory service(FDMAS) was developed to provide strength prediction and design rules for FDM parts.

Material Characterization of RP Process - Fused Deposition Modeling (쾌속조형용 재료의 특성 - FDM)

  • 김승화;안성훈
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.2
    • /
    • pp.96-101
    • /
    • 2002
  • Rapid Prototyping (RP) technology has been advanced to fabricate initial prototypes from various materials. Stratasys′ Fused Deposition Modeling (FDM) is one of the typical RP processes that provide functional prototypes of ABS plastic. In order to predict the behavior of final ABS parts, it is critical to understand the material properties of the raw FDM process material, and the effect that FDM build parameters have on the FDM part. In this paper, we seek to characterize the properties of ABS parts fabricated by the FDM 1650. Using the Design of Experiment (DOE) approach, the process parameters of FDM, such as raster orientation, air gap, bead width, color, and model temperature were examined. Tensile strengths of crisscross specimens, 〔45°/-45°〕, cross specimens, 〔0°/90°〕, and directionally fabricated tensile specimens (〔0°〕 and 〔90°〕) were measured and compared with the injection molded FDM-ABS P400 material. For the FDM parts made with a -0.003"air gap, the typical tensile strength ranged between 50 percent and 83 percent of the strength of injection molded ABS P400. From the experiments, a couple of build rules for designing FDM parts were obtained.

A study comparison of mortality projection using parametric and non-parametric model (모수와 비모수 모형을 활용한 사망률 예측 비교 연구)

  • Kim, Soon-Young;Oh, Jinho
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.701-717
    • /
    • 2017
  • The interest of Korean society and government on future demographic structures is increasing due to rapid aging. Korea's mortality rate is decreasing, but the declined gap is variable. In this study, we compare the Lee-Carter, Lee-Miller, Booth-Maindonald-Smith model and functional data model (FDM) as well as Coherent FDM using non-parametric smoothing technique. We are then examine a reasonable model for projecting on mortality declined rate trend in terms of accuracy of mortality rate by ages and life expectancy. The possibility of using non-parametric techniques for the prediction of mortality in Korea was also examined. Based on the analysis results, FDM and Coherent FDM, which uses the non-parametric technique and reflects the trend of recent data, are excellent. As a result, FDM and Coherent FDM are good fit, and predictability is also excellent assuming no significant future changes.

A study of mechanical properties with FDM 3D printing layer conditions (FDM 3D Printing 적층조건에 따른 기계적 물성의 연구)

  • Kim, Bum-Joon;Lee, Hong-Tae;Sohn, Il-Seon
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.19-24
    • /
    • 2018
  • Fused deposition Modeling (FDM) is one of the most widely used for the prototype of parts at ease. The FDM 3D printing method is a lamination manufacturing method that the resin is melted at a high temperature and piled up one by one. Another term is also referred to as FFF (Fused Filament Fabrication). 3D printing technology is mainly used only in the area of prototype production, not in production of commercial products. Therefore, if FDM 3D printer is applied to the product process of commercial products when considered, the strength and dimensional accuracy of the manufactured product is expected to be important. In this study, the mechanical properties of parts made by 3D printing with FDM method were investigated. The aim of this work is to examine how the mechanical properties of the FDM parts, by changing of processing FDM printing direction and the height of stacking layer is affected. The effect of the lamination direction and the height of the stacking layer, which are set as variables in the lamination process, by using the tensile specimen and impact specimen after the FDM manufacturing process were investigated and analyzed. The PLA (Poly Lactic Acid) was used as the filament materials for the 3D printing.

Multiplex Digital SSB Modulators and TDM/FDM Translator (다중 디지털 단측파대 변조기와 TDM/FDM 변환 장치에 관한 연구)

  • 박종연;박의열
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.1
    • /
    • pp.27-36
    • /
    • 1983
  • The 12-Channe1 TDM/FDM translator is proposed which uses a periodically varying digital filter and the multiplexing weaver modulators. The general 12-Channel TDM/FDM translator using the Weaver modulators requires 24 interpolating FIR(finite impulse response) filters and 24 sinusoidal modulators, however the TDM/FDM translator proposed in this paper consists of one interpolating periodically varying digital filter and 12 sinusoidal modulators. The results obtained in this paper show that the system is simplified and the computation time is reduced. These facts are verified by the computer simulation.

  • PDF

The Method of Simplifying TDM/FDM Translation System and the Reduction of the Translation Time (TDM/FDM 변환 장치의 단순화 방법의 변환 시간의 단축)

  • 박종연;김수중
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.3
    • /
    • pp.21-28
    • /
    • 1983
  • Four new types of TDM/FDM translation system are proposed in this paper. In the proposed system, the periodically time varying filters (P.V.F) are used in order to modify the general TDM/FDM conversion systems. The new systems have the simple structure as compared with the existing systems and the multiplication rate is reduced to about 2.0${\times}$10 multiplications/s$.$channel. It is verified by the computer simulation that the proposed systems can be used as 12-channel TDM/FDM translation systems.

  • PDF

Development of Heating System for Ensuring Accuracy of Output for Open 3D Printer (개방형 FDM 3D 프린터의 출력물 정밀도를 위한 히팅 시스템 개발)

  • Park, Sangho;Lee, Joo Hyeong;Kim, Jung Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.477-482
    • /
    • 2017
  • When using the FDM to create a 3D object, a thermoplastic filament is heated to its melting point and then extruded layer by layer. Although the FDM printing process has many advantages, its accuracy, and surface finish are not satisfactory. In recent years, much research has been devoted to improving the accuracy of the FDM printing process. The temperature difference between the nozzle and the interior of the chamber of a 3D printer is one of the important parameters affecting the printing process. In this study, we propose a methodology to reduce this temperature difference through design improvement. In addition, we elucidate how this design improvement affects product quality. The FDM printing process is conventionally carried out in a closed chamber. However, in this study, an open heating system is used to reduce the temperature. The FDM printing processes were simulated using FEM analysis.

Evaluation for Volatile Organic Compounds (VOCs) Emitted from Fused Deposition Modeling (FDM) 3D Printing Filaments (FDM 3D프린터 소재에서 방출될 수 있는 휘발성유기화합물 평가)

  • Kim, Sungho;Park, Hae Dong;Chung, Eunkyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Objectives: Fused deposition modeling (FDM) 3D printer which is one of the material extrusion (MEX) technologies is an additive manufacturing (AM) process. 3D printers have been distributed widely in Korea, particularly in school and office, even at home. Several studies have shown that nanoparticles and volatile organic compounds (VOCs) were emitted from an FDM 3D printing process. The objective of this study was to identify types of chemicals possibly emitted from FDM 3D printing materials such as PLA (polylactic acid), ABS (acrylonitrile butadiene styrene), nylon, PETG (polyethylene terephthalate glycol), PVA (polyvinyl alcohol), PC (polycarbonate) filaments. Methods: 19 FDM 3D printing filaments which have been distributed in Korea were selected and analyzed VOCs emitted of 3D printing materials by headspace gas chromatography mass spectrometry (headspace GC-MS). Subsamples were put into a vial and heated up to 200℃ (500 rpm) during 20 minutes before analyzing FDM 3D printing filaments. Results: In the case of PLA filament, lactide and methyl methacrylate, the monomer components of one, were detected, and the volume ratio ranged 27~93%, 0.5~37% respectively. In the case of ABS filaments, styrene (50.5~59.1%), the monomer components of one, was detected. Several VOCs among acetaldehyde, toluene, ethylbenzene, xylene, etc were detected from each FDM 3D printing filaments. Conclusions: Several VOCs, semi-VOCs were emitted from FDM 3D printing filaments in this study and previous studies. Users were possibly exposed to ones so that we strongly believe that we recommend to install the ventilation system such as a local exhaust ventilation (LEV) when they operate the FDM 3D printers in a workplace.

A Study of Using FDM/ABS Parts as Wax-Pattern Substitutes in the Investment Casting Process (FDM 쾌속 조형기를 통해 만들어진 ABS 파트를 이용한 직접 정밀 주조에 대한 연구)

  • Choi, Doo-Sun;Shin, Bo-Sung;Kim, Joo-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.59-67
    • /
    • 1999
  • The lead time for new products is very limited in the current manufacturing processes, therefore the Rapid Prototyping process has been introduced and generally used in the industry. Fused Deposition Manufacturing (FDM) is one of the most common methods in this field. In the FDM process, the patterns are made of Wax of ABS and ABS shows better quality of the patterns. To date, the FDM/ABS patterns are used in investment casting for making silicon moulds to produce was patterns because it is very difficult to dewax FDM/ABS directly. The aim of this paper was to propose a feasibility of using FDM/ABS parts as wax-pattern substitutes in the investment casting process. The effects of casting conditions, such as pre-heat temperature and casting temperature, are provided. Comparisons with the conventional investment casting processes using the wax-patterns under the same prototype are made. Lead-time and saving cost are discussed in using FDM/ABS parts as was-pattern substitutes compared with the products from other rapid prototype systems.

  • PDF

Cholesterol Improvement Synergistic Effects of Fermented Soybean Grits Caused by Added with Mung Bean in vitro (녹두 첨가로 인한 탈지대두 Grits(Defatted Soybean Grits) 발효물의 in vitro 상에서의 콜레스테롤 개선능 상승효과)

  • Lee, Sung-Gyu;Kim, Hyun-Jeong;Yu, Mi-Hee;Lee, Eun-Ju;Lee, Sam-Pin;Lee, In-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.7
    • /
    • pp.947-952
    • /
    • 2010
  • This study was performed to investigate cholesterol improvement of fermented defatted soybean grits (FD) and FD added with 2.5, 5, 10% mung bean (FDM). The FD and FDM were prepared by the solid state fermentation using Bacillus subtilis NUC1 at $40^{\circ}C$ for 24 hr. More than 70% cholesterol adsorption of FD and FDM groups was shown. Particularly, FDM added with 2.5% mung bean (2.5% FDM) showed highest cholesterol adsorption by 90% among FD and FDM groups. 2.5% FDM showed 42% inhibition effect on HMG-CoA reductase, and significantly decreased the intracellular cholesterol contents in HepG2 cells. Apolipoprotein AI, CIII improvement effects of FD and FDM group in HepG2 cells showed most effects in the 2.5% FDM. The results suggest that FDM added with 2.5% mung bean may be beneficial to the prevention of hypercholesterol.