• Title/Summary/Keyword: FE modal analysis

Search Result 145, Processing Time 0.025 seconds

A Study on the Improvement of Finite Element Model for Scaled Frame by Considering Eigenvectors and Eigenvalues (고유벡터와 고유치를 고려한 모형 프레임의 유한요소 모델 개선에 관한 연구)

  • 김병곤;정태진;이종길;허덕재
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1009-1016
    • /
    • 2000
  • This paper describes the procedure of increasing the efficiency of experimental modal analysis and updating the quality of FE model using the scaled commercial vehicle frame. In this study, it was found that the experimental modal analysis could be more efficient when the measurements were made on the areas with high kinetic energies. Such areas could be located with the aid of FE modal analysis. Also, the number of measurement points could be decided by considering the dynamic characteristics of full FE model. The correlation of FE model and experimental modal analysis was assessed by the differences between the natural frequencies and MAC matrix, which is based on normal modes. These differences of modal parameters were reduced through the sensitivity and optimization analysis of which objective function consisted of the errors of natural frequencies and the diagonal terms of MAC matrix.

  • PDF

Flutter Analysis of Small Aircraft using Full Airframe Dynamic FE Model (전기체 동적 유한요소 모델을 이용한 소형항공기 플러터 해석)

  • Lee, Sang-Wook;Paek, Seung-Kil;Kim, Sung-Chan;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.424-429
    • /
    • 2008
  • Aircraft flutter analysis model consists of dynamic FE model and aerodynamic model. Dynamic FE model is composed of stiffness and mass model, and is used for the prediction of normal mode characteristics of the structure. Since aircraft flutter analysis is normally performed in the modal domain, dynamic FE model shall be constructed to describe the modal characteristics of the structure with sufficient accuracy. In this study, dynamic FE modeling method was described using full airframe FE model and structural and system weight data for aircraft flutter analysis. In addition, full airframe dynamic FE model for composite small aircraft was constituted for normal mode and flutter analysis, and the mass modeling results were compared with the target weight data to validate the mass modeling method proposed. Finally, full airframe flutter analysis of composite small aircraft was performed with the dynamic FE model and the aerodynamic model composed.

  • PDF

Experimental Modal Analysis for Understanding Dynamic Characteristics of BUS FULL BIW Assembly (버스차체 동특성 파악을 위한 실험 모드해석)

  • Lee, Joon-Ho;Kim, Gyeong-Ho;Park, Mi-You;Kim, Kyoung-Won;Song, Kyoung-Ho;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.68-73
    • /
    • 2002
  • It is necessary first to understand dynamic characteristics of bus full BIW assembly for fatigue endurance analysis. FE model has been used usually for analyzing the dynamic behavior of structures. A lot of experience and effort, however, is necessary to make the credible FE model. Experimental modal analysis of structures has been performed to verify the credibility of initial FE model and to update the model. In this work, experimental modal analysis was performed to understand dynamic characteristics of bus full BIW assembly in free-free boundary condition and the result was used to verify the initial FE model. In addition, some practical techniques, which were used in this experiment, were mentioned.

  • PDF

Estimation of the Dynamic Load of the Utility in Building by TPA Method (건물 바닥 구조 해석 모드의 튜닝)

  • Jeong, Min-Ki;Kwon, Hyung-O;Kim, Hyo-Beom;Lee, Jeong-Ha;Lee, Sang-Yeop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.441-446
    • /
    • 2008
  • The source transfer receiver model ('Source $\times$ Transfer = Response' model) which is widely used by NVH development process of vehicle/transport/machinery to analyze effectively and manage efficiently the structural dynamic behavior is also applicable to construction structure. If the evaluation assessment of the vibration level does not meet the target level, there are two methods, one is source treatment or replacement and the other is the reduction treatment on the transfer structure. In case of source treatment, it is done by source supplier and so, the latter is more practical method to reduce the vibration level. In this study, in order to get the accurate Transfer FE model(floor structure FE model), Experimental modal analysis of part of floor structure and FEM modal analysis of full floor structure are performed, then updating of FE model is performed after correlation analysis between these two results and finally, the modal model and FRF are compared between FE and Experimental results.

  • PDF

Computational finite element model updating tool for modal testing of structures

  • Sahin, Abdurrahman;Bayraktar, Alemdar
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.229-248
    • /
    • 2014
  • In this paper, the development of a new optimization software for finite element model updating of engineering structures titled as FemUP is described. The program is used for computational FEM model updating of structures depending on modal testing results. This paper deals with the FE model updating procedure carried out in FemUP. The theoretical exposition on FE model updating and optimization techniques is presented. The related issues including the objective function, constraint function, different residuals and possible parameters for FE model updating are investigated. The issues of updating process adopted in FemUP are discussed. The ideas of optimization to be used in FE model updating application are explained. The algorithm of Sequential Quadratic Programming (SQP) is explored which will be used to solve the optimization problem. The possibilities of the program are demonstrated with a three dimensional steel frame model. As a result of this study, it can be said that SQP algorithm is very effective in model updating procedure.

Updating of FE models of an instrumented G+9 RC building using measured data from strong motion and ambient vibration survey

  • Singh, J.P.;Agarwal, Pankaj;Kumar, Ashok;Thakkar, S.K.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.325-339
    • /
    • 2013
  • A number of structural and modal parameters are derived from the strong motion records of an instrumented G + 9 storeyed RC building during Bhuj earthquake, 26 Jan. 2001 in India. Some of the extracted parameters are peak floor accelerations, storey drift and modal characteristics. Modal parameters of the building are also compared with the values obtained from ambient vibration survey of the instrumented building after the occurrence of earthquake. These parameters are further used for calibrating the accuracy of fixed-base Finite Element (FE) models considering structural and non-structural elements. Some conclusions are drawn based on theoretical and experimental results obtained from strong motion records and time history analysis of FE models. An important outcome of the study is that strong motion peak acceleration profile in two horizontal directions is close to FE model in which masonry infill walls are modeled.

Experimental Modal Analysis of the Hinge Structure (힌지 구조물의 실험적 동특성 해석)

  • 전병희;양명석;강휘원;이기범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.629-634
    • /
    • 2004
  • Modal parameters of the total missile structure including a hinge mechanism are estimated by the experimental modal analysis. The free-free boundary condition is simulated by hanging the missile structure with a wire rope, and the missile structure is excited by the random vibration technique. Test results are used to verify the FE analysis, the 1-D FE model is modified by 3-D model at the hinge part. Consequently, the modal parameters of the missile structure are estimated preciously.

  • PDF

Monitoring and performance assessment of a highway bridge via operational modal analysis

  • Reza Akbari;Saeed Maadani;Shahrokh Maalek
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.191-205
    • /
    • 2023
  • In this paper, through operational modal analysis and ambient vibration tests, the dynamic characteristics of a multi-span simply-supported reinforced concrete highway bridge deck was determined and the results were used to assess the quality of construction of the individual spans. Supporting finite element (FE) models were created and analyzed according to the design drawings. After carrying out the dynamic tests and extracting the modal properties of the deck, the quality of construction was relatively assessed by comparing the results obtained from all the tests from the individual spans and the FE results. A comparison of the test results among the different spans showed a maximum difference value of around 9.3 percent between the superstructure's natural frequencies. These minor differences besides the obtained values of modal damping ratios, in which the differences were not more than 5 percent, can be resulted from suitable performance, health, and acceptable construction quality of the bridge.

Experimental Modal Analysis for Understanding Dynamic Characteristics of Bus Full BIW Assembly (버스차체 동특성 파악을 위한 실험 모드해석)

  • Lee, Joon-Ho;Kim, Gyeong-Ho;Park, Mi-You;Kim, Kyoung-Won;Song, Kyoung-Ho;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.314.2-314
    • /
    • 2002
  • It is necessary first to understand dynamic characteristics of a bus full BIW assembly for fatigue endurance analysis. FE model has been used usually for analyzing the dynamic behavior of structures. A lot of experience and effort, however, is necessary to make a credible FE model. Experimental modal analysis of structures has been performed to verify the credibility of initial FE model and to update the model. (omitted)

  • PDF

Seismic qualification using the updated finite element model of structures

  • Sinha, Jyoti K.;Rao, A. Rama;Sinha, R.K.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.1
    • /
    • pp.97-106
    • /
    • 2005
  • The standard practice is to seismically qualify the safety related equipment and structural components used in the nuclear power plants. Among several qualification approaches the qualification by the analysis using finite element (FE) method is the most common approach used in practice. However the predictions by the FE model for a structure is known to show significant deviations from the dynamic behaviour of 'as installed' structure in many cases. Considering such limitation, few researchers have advocated re-qualification of such structures after installation at site to enhance the confidence in qualification vis-$\grave{a}$-vis plant safety. For such an exercise the validation of FE model with experimental modal data is important. A validated FE model can be obtained by the Model Updating methods in conjugation with the in-situ experimental modal data. Such a model can then be used for qualification. Seismic analysis using the updated FE model and its advantage has been presented through an example of an in-core component - a perforated horizontal tube of a nuclear reactor.