• Title/Summary/Keyword: FFP-TF

Search Result 10, Processing Time 0.032 seconds

Optical performance monitoring in 16CH WDM system, using FFP-TF (FFP-TF를 활용한 OPM의 16CH WDM시스템 광 성능 모니터링)

  • 이동선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8A
    • /
    • pp.657-662
    • /
    • 2003
  • The OPM(optical performance monitoring module) is needed in order to monitor optical performance. the most importance of OPM is to measure the wavelength of optical signal. In the past time, it was very difficult to get the wavelength value because they used pilot tone. Since then, using AWG(arrayed waveguide grating) and AOTF(acousto optic tuneable filter), the wavelength and the transmission qualify for multi channel signal have been monitored. In this paper, we chose the fiber fabry-perot wavelength variable filter which be evaluated for optical resolution ability to excellent, so that FBG(fiber bragg grating) was used for setting reference wavelength because chose a wavelength variable filter.

Sweeping Linearization of Wavelength Swept Laser (파장 스위핑 레이저의 스위핑 선형화)

  • Eom, Jinseob
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.605-612
    • /
    • 2018
  • In this paper, a new method for linear sweeping of wavelength swept laser has proposed, and the linear sweeping of 1kHz speed and 80nm range has realized by using this method. The proposed requires only one-shot calibration in the early stage on a wave pattern applied to FFP-TF. This makes the problem with nonlinear swept lasers like a cumbersome and time-consuming signal processing brought on by every recalibration to be resolved.

Sweeping Center Setting Automation for Wavelength Swept Laser used in SS-OCT (SS-OCT용 파장 스위핑 레이저를 위한 스위핑 중심 세팅 자동화)

  • Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.324-330
    • /
    • 2017
  • In this paper, the automation of sweeping center setting for wavelength swept laser used in SS-OCT has implemented. For 3 regions where the initial FFP-TF pass wavelength can be located, each different DC voltage pattern is applied to FFP-TF. Through its performance test to the laser, fast and exact setting to sweeping central wavelength, flat sweeping with ${\pm}0.5dB$ fluctuation range, and 10 mW average optical power were obtained. This shows that the realized automatic setting process can replace an inconvenient manual setting operation used for current wavelength swept laser. Additionally it cuts costs for optical spectrum analyzer necessary to laser spectrum monitoring.

Spectroscopy of acetylene (13C2H2) using a tunable erbium-doped fiber ring laser (파장가변 광섬유 링 레이저를 이용한 아세틸렌(13C2H2) 분광)

  • 유한영;오정미;이동한;문한섭;이원규;박갑동;서호성
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.674-679
    • /
    • 2003
  • We fabricated erbium-doped fiber ring laser with a new structure that can operate in C- & L-band wavelength region. The wave-length of the laser can be tuned continuously over 102 nm between 1510.4-1612.6 nm by insertion of the fiber Fabry-Perot tunable filter (FFP-TF) in the ring cavity. By use of the wavelength tunable characteristics of our fiber laser, we measured absorption spectra of more than fifty transition lines of the acetylene ($^{13}$ C$_2$H$_2$) molecule with high signal to noise ratio (SNR).

Construction of High-Speed Wavelength Swept Mode-Locked Laser Based on Oscillation Characteristics of Fiber Fabry-Perot Tunable Filter (광섬유 패브리-페로 파장가변 필터의 공진특성에 기반한 고속 파장가변 모드잠김 레이저의 제작)

  • Lee, Eung-Je;Kim, Yong-Pyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1393-1397
    • /
    • 2009
  • A high-speed wavelength swept laser, which is based on oscillation characteristics of a fiber Fabry-Perot tunable filter, is described. The laser is constructed by using a semiconductor optical amplifier, a fiber Fabry-Perot tunable filter, and 3.348 km fiber ring cavity. The wavelength sweeps are repeatatively generated with the repetition period of 61 kHz which is the first parallel oscillation frequency of the Fabry-Perot tunable filter for the low power consumption. Mode-locking is implemented by 3.348 km fiber ring cavity for matching the fundamental of cavity roundtrip time to the sweep period. The wavelength tuning range of the laser is 87 nm(FWHM) and the average output power is 1.284 mW.

Development of Wavelength Swept Laser by using the two SOAs parallel configuration (SOA 2개의 병렬연결을 통한 파장 가변 레이저 개발)

  • Kim, Hoon-Sup;Eom, Jin-Seob
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.235-238
    • /
    • 2008
  • In this paper, we have developed wavelength swept laser system for the swept source optical coherence tomography(SS-OCT). A laser is constructed by using the two SOAs parallel configuration, fiber Fabry-Perot tunable filter(FFP-TF). The wavelength sweeps are repetitively generated with the repetition period of 50Hz. The wavelength tuning range of the laser is more than FWHM of 80nm centered at the wavelength of 1310nm and the line-width of the source is 0.12 nm.

  • PDF

Sweeping Automatic Linearization for Wavelength Swept Laser Used in Structure Safety Monitoring (구조물 안전 모니터링용 파장 스위핑 레이저를 위한 스위핑 자동 선형화)

  • Lee, Duk-Kyu;Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.51-58
    • /
    • 2020
  • In this study, a novel method for sweeping automatic linearization of wavelength swept laser is proposed. Through the test performed on the implemented laser, the linear sweeping is held up well with a 97% decrease in nonlinearity, and 60 nm sweeping range, 1 kHz sweeping frequency, and 8.8 mW average optical power were obtained. The proposed method uses fiber Bragg grating array, optical-electronic conversion circuit, FPGA embedded module, and a LabVIEW program to generate new compensated wave patterns which were applied to the fiber Fabry-Perot tunable filter. Linear sweeping can reduce the cumbersome and time-consuming recalibration process required for nonlinear sweeping. Additionally, the proposed method provides more accurate measurement results for the structure safety monitoring system.

Wavelength-Swept Cascaded Raman Fiber Laser around 1300 nm for OCT Imaging

  • Lee, Hyung-Seok;Lee, Hwi Don;Jeong, Myung-Yung;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.154-158
    • /
    • 2015
  • We experimentally demonstrated a novel wavelength-swept laser using a cascaded Raman gain around 1310 nm. A 1064/1310 wavelength division multiplexing (WDM) coupler and coupled fiber Bragg gratings mirrors at 1064, 1117, 1175, 1240 nm are effectively used to increase the power efficiency in a laser ring cavity with highly non-linear fiber (HNLF) of 2 km. Linear wavelength sweeping is demonstrated with the 100 Hz triangular driving signal to fiber Fabry-Perot tunable filter (FFP-TF) around the 1310 nm region. The measured sweeping range and output power were 27 nm and 2.1 mW, respectively, which are suitable for optical coherence tomography (OCT) imaging.

Sweeping Linearization of Wavelength Swept Laser using PID Control (PID 제어를 이용한 파장 스위핑 레이저의 스위핑 선형화)

  • Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.412-419
    • /
    • 2020
  • In this study, a PID control method for sweeping automatic linearization of a wavelength swept laser is proposed. First, the closedloop transfer function embodying the PID control is derived. Through the simulation of the function, Kp = 0.022, Ki = 0.008, Kd = 0.002 were obtained as the best PID coefficients for fast linear sweeping. The performance test using the PID coefficients showed that linear sweeping was held up well with a 98.7% decrement in nonlinearity after the 10th feedback, and 45 nm sweeping range, 1 kHz sweeping frequency, and 8.8 mW average optical power were obtained. The equipment consists of a fiber Bragg grating array, an optical-electronic conversion circuit, and a LabVIEW FPGA program. Every 5s, automatic feedback and PID control generate a new compensated waveform and produce a better linear sweeping than before. Compared with nonlinear sweeping, linear sweeping can reduce the cumbersome and time-consuming recalibration processes and produce more accurate measurement results.

Resonance Fiber Bragg Grating Sensor system based on Fourier Domain Mode-locking Laser (분광 영역 모드록킹 레이저를 이용한 공진형 광섬유 격자 센서)

  • Choi, Byeong Kwon;Jeon, Min Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.211-216
    • /
    • 2012
  • We report a resonance fiber Bragg sensor interrogation based on a Fourier domain mode-locking (FDML) laser. The FDML laser is constructed based on a conventional ring laser cavity configuration with fiber Fabry-Perot tunable filter (FFP-TF). There are two sensor parts which are composed with two FBGs inside the laser cavity. Each sensor part provides a separate laser cavity for the FDML laser. The resonance frequencies of the laser cavities are 46.687 kHz and 44.340 kHz, respectively. We applied a static and a dynamic strain on the FBG sensor system. The slope coefficients of the measured relative wavelength shift and relative time interval from the static strain are found to be $0.61pm/{\mu}{\epsilon}$ and $0.8ns/{\mu}{\epsilon}$, respectively.