• Title/Summary/Keyword: FGM plates

Search Result 148, Processing Time 0.019 seconds

Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT

  • Abdelrahman, Wael G.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • Several classical and higher order plate theories were used to study the buckling of functionally graded material (FGM) plates. In the great majority of research, a power function is used to represent metal and ceramic material transverse distribution (P-FGM). Therefore, the effect of having other transverse variation of material properties on the buckling behavior of thick rectangular FGM plates was not properly addressed. In the present work, this effect is investigated using the Third order Shear Deformable Theory (TSDT) for the case of simply supported FGM plate. Both a sigmoid function and an exponential functions are used to represent the transverse gradual property variation. The plate governing equations are combined with a Navier type expanded solution of the unknown displacements to derive the buckling equation in terms of the pre-buckling in-plane loads. Finally, the critical in-plane load is calculated for the different buckling modes. The model is verified by a comparison of the calculated buckling loads with available published results of Al-SiC P-FGM plates. The conducted parametric study shows that manufacturing FGM plates with sigmoid variation of properties in the thickness direction increases the buckling load considerably. This improvement is found to be more significant for the case of thick plates than that of thin plates. Results also show that this stiffening-like effect of the sigmoid function profile is more evident for cases where the in-plane loads are applied along the shorter edge of the plate.

Vibroacoustic response of thin power law indexed functionally graded plates

  • Baij Nath Singh;Vinayak Ranjan;R.N. Hota
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.299-318
    • /
    • 2024
  • The main objective of this paper is to compute the far-field acoustic radiation (sound radiation) of functionally graded plates (FGM) loaded by sinusoidally varying point load subjected to the arbitrary boundary condition is carried out. The governing differential equations for thin functionally graded plates (FGM) are derived using classical plate theory (CPT) and Rayleigh integral using the elemental radiator approach. Four cases, segregated on power-law index k=0,1,5,10, are studied. A novel approach is illustrated to compute sound fields of vibrating FGM plates using the physical neutral surface with an elemental radiator approach. The material properties of the FGM plate for all cases are calculated considering the power law indexes. An in-house MATLAB code is written to compute the natural frequencies, normal surface velocities, and sound radiation fields are analytically calculated using semi-analytical formulation. Ansys is used to validate the computed sound power level. The parametric effects of the power law index, modulus ratios, different constituent of FGM plates, boundary conditions, damping loss factor on the sound power level, and radiation efficiency is illustrated. This work is the benchmark approach that clearly explains how to calculate acoustic fields using a solid layered FGM model in ANSYS ACT. It shows that it is possible to asymptotically stabilize the structure by controlling the intermittent layers' stiffness. It is found that sound fields radiated by the elemental radiators approach in MATLAB, ANSYS and literatures are in good agreement. The main novelty of this research is that the FGM plate is analyzed in the low-frequency range, where the stiffness-controlled region governs the whole analysis. It is concluded that a clamped mono-ceramic FGM plate radiates a lesser sound power level and higher radiation efficiency than a mono-metallic or metal-rich FGM plate due to higher stiffness. It is found that change in damping loss factor does not affect the same constituents of FGM plates but has significant effects on the different constituents of FGM plates.

Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation

  • Daouadji, Tahar Hassaine;Adim, Belkacem;Benferhat, Rabia
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.35-53
    • /
    • 2016
  • Flexural bending analysis of perfect and imperfect functionally graded materials plates under hygro-thermo-mechanical loading are investigated in this present paper. Due to technical problems during FGM fabrication, porosities and micro-voids can be created inside FGM samples which may lead to the reduction in density and strength of materials. In this investigation, the FGM plates are assumed to have even and uneven distributions of porosities over the plate cross-section. The modified rule of mixture is used to approximate material properties of the FGM plates including the porosity volume fraction. In order the elastic coefficients, thermal coefficient and moisture expansion coefficient of the plate are assumed to be graded in the thickness direction. The elastic foundation is modeled as two-parameter Pasternak foundation. The equilibrium equations are given and a number of examples are solved to illustrate bending response of Metal-Ceramic plates subjected to hygro-thermo-mechanical effects and resting on elastic foundations. The influences played by many parameters are investigated.

Finite element based free vibration analysis of sandwich FGM plates under hygro-thermal conditions using zigzag theory

  • Aman Garg;Neeraj Kumar Shukla;M.Ramkumar Raja;Hanuman D. Chalak;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi;Li Li;A.M. Zenkour
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.547-570
    • /
    • 2023
  • In the present work, a comparative study has been carried out between power, exponential, and sigmoidal sandwich FGM plates for free vibration conditions under hygro-thermal conditions. Rules of mixture is used to determine effective material properties across the thickness for power-law and sigmoid sandwich FGM plates. Exponential law is used to plot effective material properties for exponentially graded sandwich FGM plates. Temperature and moisture dependent material properties were used during the analysis. Free vibration analysis is carried out using recently proposed finite element based HOZT. Present formulation satisfies interlayer transverse stress continuity conditions at interfaces and transverse shear stress-free conditions at the plate's top and bottom surfaces. The present model is free from any penalty or post-processing requirements. Several new results are reported in the present work, especially for unsymmetric sandwich FGM plates and exponential and sigmoidal sandwich FGM plates.

A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates

  • Boussoula, Abderrafik;Boucham, Belhadj;Bourada, Mohamed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.197-218
    • /
    • 2020
  • In this work, thermomechanical flexural analysis of functionally graded material sandwich plates with P-FGM face sheets and E-FGM and symmetric S-FGM core is performed by employing a nth-order shear deformation theory. A novel type of S-FGM sandwich plates, namely, both P-FGM face sheets and a symmetric S-FGM hard core are considered. By employing only four unknown variables, the governing equations are obtained based on the principle of virtual work and then Navier method is used to solve these equations. Analytical solutions are deduced to compute the stresses and deflections of simply supported S-FGM sandwich plates. The effects of volume fraction variation, geometrical parameters and thermal load on thermomechanical flexural behavior of the symmetric FGM sandwich plates are investigated.

Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments

  • Chen, Chun-Sheng;Liu, Fwu-Hsing;Chen, Wei-Ren
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.251-261
    • /
    • 2017
  • In this paper, thermal effect on the vibration and stability of initially stressed sandwich plates with functionally graded material (FGM) face sheets is analyzed. Material properties of FGM face sheet are graded continuously in the thickness direction. The variation of FGM properties assumes a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of arbitrarily initially-stressed sandwich plates including the effects of transverse shear deformation and rotary inertia are derived. The initial stress is taken to be a combination of a uniaxial extensional stress and a pure bending stress in the examples. The eigenvalue problems are formed to study the vibration and buckling characteristics of simple supported initially stressed FGM/metal/FGM plates. The effects of volume fraction index, temperature rise, initial stress and layer thickness of metal on the natural frequencies and buckling loads are investigated. The results reveal that the volume fraction index, initial stresses and layer thickness of metal have significant influence on the vibration and stability of sandwich plates with FGM face sheets.

Analytical solutions for vibrations of rectangular functionally graded Mindlin plates with vertical cracks

  • Chiung-Shiann Huang;Yun-En Lu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Analytical solutions to problems are crucial because they provide high-quality comparison data for assessing the accuracy of numerical solutions. Benchmark analytical solutions for the vibrations of cracked functionally graded material (FGM) plates are not available in the literature because of the high level of complexity of such solutions. On the basis of first-order shear deformation plate theory (FSDT), this study proposes analytical series solutions for the vibrations of FGM rectangular plates with side or internal cracks parallel to an edge of the plates by using Fourier cosine series and the domain decomposition technique. The distributions of FGM properties along the thickness direction are assumed to follow a simple power law. The proposed analytical series solutions are validated by performing comprehensive convergence studies on the vibration frequencies of cracked square plates with various crack lengths and under various boundary condition combinations and by performing comparisons with published results based on various plate theories and the theory of three-dimensional elasticity. The results reveal that the proposed solutions are in excellent agreement with literature results obtained using the Ritz method on the basis of FSDT. The paper also presents tabulations of the first six nondimensional frequencies of cracked rectangular Al/Al2O3 FGM plates with various aspect ratios, thickness-to-width ratios, crack lengths, and FGM power law indices under six boundary condition combinations, the tabulated frequencies can serve as benchmark data for assessing the accuracy of numerical approaches based on FSDT.

Bending, Vibration and Buckling Analysis of Functionally Graded Material Plates (점진기능재료(FGM) 판의 휨, 진동 및 좌굴 해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.1043-1049
    • /
    • 2008
  • In this paper, we investigate the static response. natural frequencies and buckling loads of functionally graded material (FGM) plates, using a Navier method. The eigenvalues of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but their Poisson's ratios of the FGM plates and shells are assumed to be constant. The expressions of the membrane. bending and shear stiffness of FGM plates art more complicated combination of material properties than a homogeneous element. In order to validate the present solutions, the reference solutions of rectangular plates based on the classical theory are used. The various examples of composite and FGM structures are presented. The present results are in good agreement with the reference solutions.

Analytical solution of nonlinear cylindrical bending for functionally graded plates

  • Daouadji, Tahar Hassaine;Hadji, Lazreg
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.631-644
    • /
    • 2015
  • This article considers the problems of cylindrical bending of functionally graded plates in which material properties vary through the thickness. The variation of the material properties follows two power-law distributions in terms of the volume fractions of constituents. In addition, this paper considers orthotropic materials rather than isotropic materials. The traction-free condition on the top surface is replaced with the condition of uniform load applied on the top surface. Numerical results are presented to show the effect of the material distribution on the deflections and stresses. Results show that, all other parameters remaining the same, the studied quantities (stress, deflection) of P-FGM and E-FGM plates are always proportional to those of homogeneous isotropic plates. Therefore, one can predict the behaviour of P-FGM and E-FGM plates knowing that of similar homogeneous plates.

Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique

  • Ghannadpour, S.A.M.;Mehrparvar, M.
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.227-239
    • /
    • 2020
  • The aim of this study is to obtain the nonlinear and post-buckling responses of relatively thick functionally graded plates with oblique elliptical cutouts using a new semi-analytical approach. To model the oblique elliptical hole in a FGM plate, six plate-elements are used and the connection between these elements is provided by the well-known Penalty method. Therefore, the semi-analytical technique used in this paper is known as the plate assembly technique. In order to take into account for functionality of the material in a perforated plate, the volume fraction of the material constituents follows a simple power law distribution. Since the FGM perforated plates are relatively thick in this research, the structural model is assumed to be the first order shear deformation theory and Von-Karman's assumptions are used to incorporate geometric nonlinearity. The equilibrium equations for FGM plates containing elliptical holes are obtained by the principle of minimum of total potential energy. The obtained nonlinear equilibrium equations are solved numerically using the quadratic extrapolation technique. Various sets of boundary conditions for FGM plates and different cutout sizes and orientations are assumed here and their effects on nonlinear response of plates under compressive loads are examined.