• Title/Summary/Keyword: FIB-Sputtering

Search Result 32, Processing Time 0.028 seconds

FIB Machining Characteristic Analysis according to $Ga^+$ Ion Beam Current (집속이온빔의 전류변화에 따른 미세가공 특성분석)

  • Kang, Eun-Goo;Choi, Byeong-Yeol;Hong, Won-Pyo;Lee, Seok-Woo;Choi, Hon-Zong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.58-63
    • /
    • 2006
  • FIB equipment can perform sputtering and chemical vapor deposition simultaneously. It is very advantageously used to fabricate a micro structure part having 3D shape because the minimum beam size of ${\Phi}10nm$ and smaller is available. Since general FIB uses very short wavelength and extremely high energy, it can directly make a micro structure less than $1{\mu}m$. As a result, FIB has been probability in manufacturing high performance micro devices and high precision micro structures. Until now, FIB has been commonly used as a very powerful tool in the semiconductor industry. It is mainly used for mask repair, device correction, failure analysis, IC error correction, etc. In this paper FIB-Sputtering and FIB-CVD characteristic analysis were carried out according to $Ga^+$ ion beam current that is very important parameter for minimizing the pattern size and maximizing the yield. Also, for FIB-Sputtering burr caused by redeposition of the substrate characteristic analysis was carried out.

Analysis on FIB-Sputtering Process using Taguchi Method (다구찌 기법을 이용한 FIB-Sputtering 가공 특성 분석)

  • Lee, Seok-Woo;Choi, Byoung-Yeol;Kang, Eun-Goo;Hong, Won-Pyo;Choi, Hon-Zong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.71-75
    • /
    • 2006
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its usage in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. The target of this paper is the analysis of FIB sputtering process according to tilt angle, dwell time and overlap for application of 3D micro and pattern fabrication and to find the effective beam scanning conditions using Taguchi method. Therefore we make the conclusions that tilt angle is dominant parameter for sputtering yield. Burr size is reduced as tilt angle is higher.

The analysis of sputtering characteristics using Focused Ion Beam according to Focal Length (FIB 가공 공정 특성 분석)

  • Choi B.Y.;Choi W.C.;Kang E.G.;Hong W.P;Lee S.W.;Choi H.Z.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1518-1521
    • /
    • 2005
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its usage in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries This paper focus to apply the sputtering technology accumulated by experiments to 3d structure fabrication with high resolution. Therefore some verifications and discussions of the characteristics of FIB sputtering results according to focal length were described in this paper. And we suggested the definition of rectangular pattern profile and made the verifications of sputtering results based on definition of it.

  • PDF

Development of Micro Plasma Electrode using Focused Ion Beam (FIB를 이용한 마이크로 플라즈마 전극 개발)

  • Choi Hon-Zong;Kang Eun-Goo;Lee Seok-Woo;Hong Won-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.175-180
    • /
    • 2005
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. In this research, fabrication of micro plasma electrode was carried out using FIB. The one of problems of FIB-sputtering is the redeposition of material including Ga+ ion source during sputtering process. Therefore the effect of the redeposition was verified by EDX. And the micro plasma electrode of copper was fabricated by FIB.

A Study on the Machining Characteristic of DLC Coated Mold Material Using FIB (FIB를 이용한 DLC소재의 가공공정에 관한 연구)

  • Hong, W.P.;Choi, B.Y.;Kang, E.G.;Lee, S.W.;Choi, H.Z.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.224-230
    • /
    • 2009
  • FIB has been commonly used as a very powerful tool in the semiconductor industry. It is mainly used for mask repair, device correction, failure analysis and IC error correction, etc. Currently, FIB is not being applied to the fabrication of the micro and nano-structured mold, because of low productivity. And also sputtering rate has been required to fabricate 3D shape. In the paper, we studied the FIB-Sputtering rate according to mold materials. And surface roughness characteristics had been analysed for micro or nano mold fabrication. Si wafer, Glassy Carbon, STAVAX and DLC that have been normally considered as good micro or nano mold materials were used in the study.

A Study on the Shape of the Pattern Milled Using FIB (집속이온빔 연마에 의한 패턴의 형태에 관한 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.679-685
    • /
    • 2014
  • For the measurements of surface shape milled using FIB (focused ion beam), the silicon bulk, $Si_3N_4/Si$, and Al/Si samples are used and observed the shapes milled from different sputtering rates, incident angles of $Ga^+$ ions bombardment, beam current, and target material. These conditions also can be influenced the sputtering rate, raster image, and milled shape. The fundamental ion-solid interactions of FIB milling are discussed and explained using TRIM programs (SRIM, TC, and T-dyn). The damaged layers caused by bombarding of $Ga^+$ ions were observed on the surface of target materials. The simulated results were shown a little bit deviation with the experimental data due to relatively small sputtering rate on the sample surface. The simulation results showed about 10.6% tolerance from the measured data at 200 pA. On the other hand, the improved analytical model of damaged layer was matched well with experimental XTEM (cross-sectional transmission electron microscopy) data.