• Title/Summary/Keyword: FOV Model

Search Result 33, Processing Time 0.029 seconds

Distortion Center Estimation using FOV Model and 2D Pattern (FOV 모델과 2D 패턴을 이용한 왜곡 중심 추정 기법)

  • Seo, Jeong-Goo;Kang, Euiseon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.11-19
    • /
    • 2013
  • This paper presents a simple method to estimate center of distortion and correct radial distortion from fish-eye lens. If the center of image is not locate that of lens in a straight line, the disadvantage of FOV model is low accurate because of correcting distortion without estimated centre of distortion. We propose a method accurately estimating Distortion center using FOV model and 2D pattern from wide angle lens. Our method determines the center of distortion in least error between straight lines and curves with FOV model. The results of experimental measurements on synthetic and real data are presented.

Detection Performance Analysis of the Telescope considering Pointing Angle Command Error (지향각 명령 오차를 고려한 망원경 탐지 성능 분석)

  • Lee, Hojin;Lee, Sangwook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.237-243
    • /
    • 2017
  • In this paper, the detection performance of the electro-optical telescopes which observes and surveils space objects including artificial satellites, is analyzed. To perform the Modeling & Simulation(M&S) based analysis, satellite orbit model, telescope model, and the atmospheric model are constructed and a detection scenario observing the satellite is organized. Based on the organized scenario, pointing accuracy is analyzed according to the Field of View(FOV), which is one of the key factors of the telescope, considering pointing angle command error. In accordance with the preceding result, detection possibility according to the pixel-count of the detector and the FOV of the telescope is analyzed by discerning detection by Signal-to-Noise Ratio(SNR). The result shows that pointing accuracy increases with larger FOV, whereas the detection probability increases with smaller FOV and higher pixel-count. Therefore, major specification of the telescope such as FOV and pixel-count should be determined considering the result of M&S based analysis performed in this paper and the operational circumstances.

Wide FOV Panorama Image Acquisition Method (광각 파노라마 영상획득 방법)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2117-2122
    • /
    • 2015
  • Wide FOV(Field-of-View) is required to contain much more visual information in a single image. The wide FOV imaging system has many industrial applications such as surveillance, security, tele-conference, and mobile robots. In order to obtain a wide FOV panorama image, an imaging system with hyperbolic cylinder mirror is proposed in this paper. Because the horizontal FOV is more important than the vertical FOV in general, a hyperbolic cylinder mirror is designed in this paper, that has a hyperbolic curve in the horizontal surface and is the same as a planar mirror in the vertical axis. Imaging model of the proposed imaging system is presented by ray tracing method and the hyperbolic cylinder mirror is implemented. The imaging performance of wide FOV is verified by experiments in this paper. This imaging system is cost-effective and is possible to acquire a wide panorama image having 210 degree horizontal FOV in real-time without an extra image processing.

Automated Print Quality Assessment Method for 3D Printing AI Data Construction

  • Yoo, Hyun-Ju;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.223-234
    • /
    • 2022
  • The evaluation of the print quality of 3D printing has traditionally relied on manual work using dimensional measurements. However, the dimensional measurement method has an error value that depends on the person who measures it. Therefore, we propose the design of a new print quality measurement method that can be automatically measured using the field-of-view (FOV) model and the intersection over union (IoU) technique. First, the height information of the modeling is acquired from a camera; the output is measured by a sensor; and the images of the top and isometric views are acquired from the FOV model. The height information calculates the height ratio by calculating the percentage of modeling and output, and compares the 2D contour of the object on the image using the FOV model. The contour of the object is obtained from the image for 2D contour comparison and the IoU is calculated by comparing the areas of the contour regions. The accuracy of the automated measurement technique for determining, which derives the print quality value was calculated by averaging the IoU value corrected by the measurement error and the height ratio value.

Wide Field-of-View Imaging Using a Combined Hyperbolic Mirror

  • Yi, Sooyeong;Ko, Youngjun
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.336-343
    • /
    • 2017
  • A wide field-of-view (FOV) image contains more visual information than a conventional image. This study proposes a new type of hyperbolic mirror for wide FOV image acquisition. The proposed mirror consists of a hyperbolic cylindrical section and a bowl-shaped hyperbolic omnidirectional section. Using an imaging system with this mirror, it is possible to achieve a $213.8^{\circ}$ horizontal and a $126.94^{\circ}$ vertical maximum FOV. Parameters of each section of the mirror are designed to be continuous at the junction of the two parts, and the resultant image is seamless. The image-acquisition model is obtained using ray-tracing optics. To rectify the geometrical distortion of the original image due to the mirror, an image-restoration algorithm based on conformal projection is presented in this study. The performance of the proposed imaging system with the hyperbolic mirror and its image-restoration algorithm are verified by experiments.

Reconstruction of Wide FOV Image from Hyperbolic Cylinder Mirror Camera (실린더형 쌍곡면 반사체 카메라 광각영상 복원)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.146-153
    • /
    • 2015
  • In order to contain as much information as possible in a single image, a wide FOV(Field-Of-View) imaging system is required. The catadioptric imaging system with hyperbolic cylinder mirror can acquire over 180 degree horizontal FOV realtime panorama image by using a conventional camera. Because the hyperbolic cylinder mirror has a curved surface in horizontal axis, the original image acquired from the imaging system has the geometrical distortion, which requires the image processing algorithm for reconstruction. In this paper, the image reconstruction algorithms for two cases are studied: (1) to obtain an image with uniform angular resolution and (2) to obtain horizontally rectilinear image. The image acquisition model of the hyperbolic cylinder mirror imaging system is analyzed by the geometrical optics and the image reconstruction algorithms are proposed based on the image acquisition model. To show the validity of the proposed algorithms, experiments are carried out and presented in this paper. The experimental results show that the reconstructed images have a uniform angular resolution and a rectilinear form in horizontal axis, which are natural to human.

Accuracy of virtual models in the assessment of maxillary defects

  • Kamburoglu, Kivanc;Kursun, Sebnem;Kilic, Cenk;Ozen, Tuncer
    • Imaging Science in Dentistry
    • /
    • v.45 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • Purpose: This study aimed to assess the reliability of measurements performed on three-dimensional (3D) virtual models of maxillary defects obtained using cone-beam computed tomography (CBCT) and 3D optical scanning. Materials and Methods: Mechanical cavities simulating maxillary defects were prepared on the hard palate of nine cadavers. Images were obtained using a CBCT unit at three different fields-of-views (FOVs) and voxel sizes: 1) $60{\times}60mm$ FOV, $0.125mm^3$ ($FOV_{60}$); 2) $80{\times}80mm$ FOV, $0.160mm^3$ ($FOV_{80}$); and 3) $100{\times}100mm$ FOV, $0.250mm^3$ ($FOV_{100}$). Superimposition of the images was performed using software called VRMesh Design. Automated volume measurements were conducted, and differences between surfaces were demonstrated. Silicon impressions obtained from the defects were also scanned with a 3D optical scanner. Virtual models obtained using VRMesh Design were compared with impressions obtained by scanning silicon models. Gold standard volumes of the impression models were then compared with CBCT and 3D scanner measurements. Further, the general linear model was used, and the significance was set to p=0.05. Results: A comparison of the results obtained by the observers and methods revealed the p values to be smaller than 0.05, suggesting that the measurement variations were caused by both methods and observers along with the different cadaver specimens used. Further, the 3D scanner measurements were closer to the gold standard measurements when compared to the CBCT measurements. Conclusion: In the assessment of artificially created maxillary defects, the 3D scanner measurements were more accurate than the CBCT measurements.

Compact Catadioptric Wide Imaging with Secondary Planar Mirror

  • Ko, Young-Jun;Yi, Soo-Yeong
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.329-335
    • /
    • 2019
  • Wide FOV imaging systems are important for acquiring rich visual information. A conventional catadioptric imaging system deploys a camera in front of a curved mirror to acquire a wide FOV image. This is a cumbersome setup and causes unnecessary occlusions in the acquired image. In order to reduce both the burden of the camera deployment and the occlusions in the images, this study uses a secondary planar mirror in the catadioptric imaging system. A compact design of the catadioptric imaging system and a condition for the position of the secondary planar mirror to satisfy the central imaging are presented. The image acquisition model of the catadioptric imaging system with a secondary planar mirror is discussed based on the principles of geometric optics in this study. As a backward mapping, the acquired image is restored to a distortion-free image in the experiments.

Precise System Models using Crystal Penetration Error Compensation for Iterative Image Reconstruction of Preclinical Quad-Head PET

  • Lee, Sooyoung;Bae, Seungbin;Lee, Hakjae;Kim, Kwangdon;Lee, Kisung;Kim, Kyeong-Min;Bae, Jaekeon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1764-1773
    • /
    • 2018
  • A-PET is a quad-head PET scanner developed for use in small-animal imaging. The dimensions of its volumetric field of view (FOV) are $46.1{\times}46.1{\times}46.1mm^3$ and the gap between the detector modules has been minimized in order to provide a highly sensitive system. However, such a small FOV together with the quad-head geometry causes image quality degradation. The main factor related to image degradation for the quad-head PET is the mispositioning of events caused by the penetration effect in the detector. In this paper, we propose a precise method for modelling the system at the high spatial resolution of the A-PET using a LOR (line of response) based ML-EM (maximum likelihood expectation maximization) that allows for penetration effects. The proposed system model provides the detection probability of every possible ray-path via crystal sampling methods. For the ray-path sampling, the sub-LORs are defined by connecting the sampling points of the crystal pair. We incorporate the detection probability of each sub-LOR into the model by calculating the penetration effect. For comparison, we used a standard LOR-based model and a Monte Carlo-based modeling approach, and evaluated the reconstructed images using both the National Electrical Manufacturers Association NU 4-2008 standards and the Geant4 Application for Tomographic Emission simulation toolkit (GATE). An average full width at half maximum (FWHM) at different locations of 1.77 mm and 1.79 mm are obtained using the proposed system model and standard LOR system model, which does not include penetration effects, respectively. The standard deviation of the uniform region in the NEMA image quality phantom is 2.14% for the proposed method and 14.3% for the LOR system model, indicating that the proposed model out-performs the standard LOR-based model.

Simulation of Spinning Concentric Annular Ring Reticle Seeker and IRCCM using Correlation Coefficient (회전 동심원 레티클 탐색기의 시뮬레이션 및 상관계수를 이용한 반대응기법)

  • 홍현기;장성갑;두경수;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.763-771
    • /
    • 2000
  • Reticle systems, which are widely used in infrared (IR) missile seekers, are considered to be the classical approach for estimating the position of a target in the field of view (FOV). This paper presents an effective simulation tool that gives tracking results of the concentric annular ring reticle seeker. We construct the concentric annular ring reticle seeker on Matlab-Simulink for a dynamic simulation. Our simulation model provides tracking results in various cases, and is applicable to the study of the development of the advanced seekers. While false targets such as flares are presented in the FOV, simulation results show that the existing seeker cannot determine a precise target location. In order to decrease the susceptibility to countermeasures such as flares, we propose an efficient counter-countermeasure using the correlated relationship of modulated signals and the references. We have ascertained that the reticle seeker using our technique make more effective target tracking than previous seekers.

  • PDF