• Title/Summary/Keyword: FPMIPv6

Search Result 13, Processing Time 0.054 seconds

Authentication eXtention Scheme of Fast Handover for Secure NEMO-based PMIPv6 Networks (안전한 NEMO 기반 PMIPv6 네트워크를 위한 빠른 핸드오버를 지원하는 확장 인증기법)

  • Im, Illkyun;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.107-119
    • /
    • 2013
  • This paper reinforced security under the network evaluation of wire wireless integration of NEMO (NEwork MObility) supporting mobility and network-based PMIPv6 (Proxy Mobile IPv6). It also proposes $SK-L^2AS$ (Symmetric Key-Based Local-Lighted Authentication Scheme) based on simple key which reduces code calculation and authentication delay costs. Moreover, fast handover technique was also adopted to reduce handover delay time in PMIPv6 and X-FPMIPv6 (eXtension of Fast Handover for PMIPv6) was used to support global mobility. In addition, AX-FPMIPv6 (Authentication eXtension of Fast Handover for PMIPv6) is proposed which integrated $SK-L^2AS$ and X-FPMIPv6 by applying Piggybacks method to reduce the overhead of authentication and signaling. The AX-FPMIPv6 technique suggested in this paper shows that this technique is better than the existing schemes in authentication and handover delay according to the performance analysis.

An Implementation and Analysis of FPMIPv6 Test Bed Using OAI PMIPv6 (OAI PMIPv6를 이용한 FPMIPv6 테스트베드의 구현 및 분석)

  • Do, Misol;Anh, Khuong Quoc;Park, Changyong;Shon, Minhan;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.718-721
    • /
    • 2012
  • PMIPv6 (Proxy Mobile IPv6)는 네트워크 기반 이동성 지원 프로토콜로 MN (Mobile Node)의 이동성 프로토콜 스택 유무와 관계없이 MN의 이동성을 지원한다. 하지만 핸드오버 과정에서 이동성 관련 시그널링을 완료할 때까지 지연이 발생하고 핸드오버 동안 MN으로 향하는 패킷이 손실된다는 단점을 갖고 있다. 이러한 단점을 보완하기 위한 기법으로 FPMIPv6 (Fast Handover for PMIPv6)가 제안되었다. 본 논문에서는 PMIPv6의 오픈소스인 OAI PMIPv6 (OpenAirInterface PMIPv6)를 기반으로 FPMIPv6 테스트베드를 구축하고 MN의 핸드오버를 실험하여 실제 FPMIPv6 환경에서의 핸드오버 지연 및 패킷 손실 정도를 측정한다.

Out-of-Order Packet Analysis in Fast Handover for Proxy Mobile IPv6 (PMIPv6 빠른 핸드오버에서의 Out-of-Order 패킷 분석)

  • Quoc, Anh Khuong;Shon, Min Han;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.287-289
    • /
    • 2013
  • Fast Handover for Proxy Mobile IPv6 (FPMIPv6), a protocol described in RFC 5949, is used to reduce handover latency and minimize packet loss problem occuring in the Proxy Mobile IPv6 (PMIPv6) protocol. However, during the study of implementing FPMIPv6, we found the Out-of-Order Packet (OoOP) problem that occurs in the experiment of FPMIPv6. Since the OoOP is an issue that affects significantly to QoS of the network, in this paper, we analyze the OoOP problem by using network model. The analysis conducts the cause of occurring OoOP problem due to there exist two paths for data transmitted from Correspondent Node (CN) to MN in FPMIPv6.

Mobility Management Scheme based on User Mobility QoS and Security-Effective Network in Heterogeneous Mobile Networks (이종의 모바일 네트워크에서 사용자 이동성 QoS와 보안효과적인 네트워크 기반의 이동성관리 기법)

  • Lee, Hyeungwoo;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.87-97
    • /
    • 2015
  • To support the efficient mobility MIPv6v, FMIPv6, HMIPv6 and host-based mobility management protocols have been developed. AAAC (Authentication, Authorization, Accounting and Charging) system is applied in this paper analyzed the the existing IPv6 PMIPv6, FPMIPv6 network security effective and IPv6 MMP (Mobile Management Protocol) Features and performance analysis is performed. And IPv6 MMP seamless transfer performance in terms of packet loss probability, will be analyzed. That can be efficiently used as a method for the integration of QoS and mobility so that you can manage and control the resources presented QoSB usage. Results of evaluation results showed a better overall fast handover structure of mobility management techniques. PMIPv6 and FPMIPv6 in many respects the most efficient structure that can be specifically, a fast handover of the structure of the network-based mobility management scheme showed the best results.

Security Analysis and Implementation of Fast Inter-LMA domain Handover Scheme in Proxy Mobile IPv6 Networks (프록시 모바일 IPv6 네트워크에서 LMA도메인 간 핸드오버 기법의 보안성 분석 및 구현)

  • Chai, Hyun-Suk;Jeong, Jong-Pil
    • The KIPS Transactions:PartC
    • /
    • v.19C no.2
    • /
    • pp.99-118
    • /
    • 2012
  • In PMIPv6-based network, mobile nodes can be made smaller and lighter because the network nodes perform the mobility management-related functions on behalf of the mobile nodes. The one of the protocols, Fast Handovers for Proxy Mobile IPv6(FPMIPv6)[1] has studied by the Internet Engineering Task Force(IETF). Since FPMIPv6 adopts the entities and the concepts of Fast Handovers for Mobile IPv6(FMIPv6) in Proxy Mobile IPv6(PMIPv6), it reduces the packet loss. Conventional scheme has proposed that it cooperated with an Authentication, Authorization and Accounting(AAA) infrastructure for authentication of a mobile node in PMIPv6, Despite the best efficiency, without begin secured of signaling messages, PMIPv6 is vulnerable to various security threats such as the DoS or redirect attAcks and it can not support global mobility between PMIPv. In this paper, we analyze Kang-Park & ESS-FH scheme, and then propose an Enhanced Security scheme for FPMIPv6(ESS-FP). Based on the CGA method and the pubilc key Cryptography, ESS-FP provides the strong key exchange and the key independence in addition to improving the weaknesses for FPMIPv6. The proposed scheme is formally verified based on Ban-logic, and its handover latency is analyzed and compared with that of Kang-Park scheme[3] & ESS-FH and this paper propose inter-domain fast handover sheme for PMIPv6 using proxy-based FMIPv6(FPMIPv6).

Analytical Approach of New Random-walk Based Mobility Management Scheme in IP-based Mobile Networks

  • Song, Myungseok;Cho, Jun-Dong;Jeong, Jongpil
    • International Journal of Advanced Culture Technology
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • In next-generation wireless networks, provisioning of IP-based network architecture and seamless transmission services are very important issues for mobile nodes. For this reason, a mobility management mechanism to support global roaming is highly regarded. These technologies bring a broader life by using a global roaming account through the connection of multiple devices or technology to mobile users; they also provide real-time multimedia services. This paper presents a comprehensive performance analysis of fast handover for hierarchical mobile IPv6 (F-HMIPv6), hierarchical mobile IPv6 (HMIPv6), Proxy Mobile IPv6 (PMIPv6), and fast Proxy Mobile IPv6 (FPMIPv6) using the fluid-flow model and random-walk model. As a result, the location update cost of the PMIPv6 and FPMIPv6 is better than that of HMIPv6 and F-HMIPv6. These results suggest that the network-based mobility management technology is superior to the hierarchical mobility management technology in the mobility environment.

Proposal of a mobility management scheme for sensor nodes in IoT(Internet of Things) (사물인터넷(IoT)환경에서 센서 노드들의 이동성 관리 방안에 관한 제안)

  • Park, Seung-Kyun
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.4
    • /
    • pp.59-64
    • /
    • 2016
  • 6LoWPAN (IPv6 over Low Power Wireless Sensor Network) standardized by IETF does not support the mobility of wireless sensor nodes. Since the wireless sensor node, subject to a lot of constraints in the CPU, memory, a battery is not easy to apply to existing protocols such as Mobile IPv6. In this paper, we propose a novel mobility management architecture and methods to work with 6LoWPAN based on the analysis on FPMIPv6 (Fast PMIPv6) the host is not a handover procedure performed in order to support the mobility of such sensor nodes. It was suggested the use of a dispatch code pattern that is not currently used in 6LoWPAN for inter-working, MAG and MAC, MAC in order to reduce packet loss caused as the authentication delay in the handover process to minimize the power consumption of a sensor node that is caused by the re-transmission the new concept of temporary guarantee (temporary guarantee) and trust relationships (trust relationship) between AAA and introduced.

A Study on Context Aware Vertical Handover Scheme for Supporting Optimized Flow Multi-Wireless Channel Service based Heterogeneous Networks (이기종 망간의 최적화된 플로우 기반 다중 무선 채널 지원을 위한 상황인지 수직핸드오버 네트워크 연구)

  • Shin, Seungyong;Park, Byungjoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • Recently, multimedia streaming service has been activated, and the demand for high-quality multimedia convergence contents services is predicted to increase significantly in the future. The issues of the increasing network load due to the rise of multimedia streaming traffic must be addressed in order to provide QoS guaranteed services. To do this, an efficient network resource management and mobility support technologies are needed through seamless mobility support for heterogeneous networks. Therefore, in this paper, an MIH technology was used to recognize the network situation information in advance and reduce packet loss due to handover delays, and an ACLMIH-FHPMIPv6 is designed that can provide an intelligent interface through introducing a hierarchical mobility management technique in FPMIPv6 integrated network.

Global Mobility Management Scheme for Seamless Mobile Multicasting Service Support in PMIPv6 Networks

  • Song, Myungseok;Cho, Jun-Dong;Jeong, Jong-Pil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.637-658
    • /
    • 2015
  • The development of multimedia applications has followed the development of high-speed networks. By improving the performance of mobile devices, it is possible to provide high-transfer-speed broadband and seamless mobile multicasting services between indoor and outdoor environments. Multicasting services support efficient group communications. However, mobile multicasting services have two constraints: tunnel convergence and handoff latency. In order to solve these problems, many protocols and handoff methods have been studied. In this paper, we propose inter local mobility anchor (inter-LMA) optimized handoff model for mobile multicasting services in proxy mobility IPv6 based (PMIPv6-based) networks. The proposed model removes the tunnel convergence issue and reduces the router processing costs. Further, it the proposed model allows for the execution of fast handoff operations with adaptive transmission mechanisms. In addition, the proposed scheme exhibits low packet delivery costs and handoff latency in comparison with existing schemes and ensures fast handoff when moving the inter-LMA domain.

Intelligent Hierarchical Mobility Support Scheme in F-PMIPv6 Networks (F-PMIPv6 네트워크에서 지능적인 계층적 이동성 지원 기법)

  • Han, Sunghee;Jeong, Jongpil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.4
    • /
    • pp.337-349
    • /
    • 2013
  • In this paper, we propose a new mobility management scheme, called i-FP(intelligent Fast PMIPv6). Our proposed i-FP scheme is addressed for solving the existing local mobility management problems from legacy frameworks. To move MN(Mobile Node) to other networks in one domain, i-FP employs three network entities which are extended from PMIPv6(Proxy Mobile IPv6), LMA(Local Mobility Anchor), MAG(Mobile Access Gateway) and MN. In i-FP, the three network entities can reduce the handover delay time of MNs. Also, i-FP uses an IP header swapping mechanism to avoid the traffic overhead and improve the throughput of network. To evaluate the performance of i-FP, we analyze our i-FP, HMIPv6(Hierarchical Mobile IPv6) and PMIPv6 which are legacy protocols of local mobility management in terms of various parameters. Finally, our i-FP scheme shows good performance(reduction of routing hops 10.2%, signaling costs 58.5% and handover delay 16.3%) than other network schemes for the total cost.