• Title/Summary/Keyword: Face Centered Cubic

Search Result 89, Processing Time 0.035 seconds

Effect of shear on poly(styrene-b-isoprene) copolymer micelles

  • Bang, Joon-A;Lodge, Timothy P.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.227-232
    • /
    • 2007
  • The use of various shearing apparatuses to study the phase behavior of poly(styrene-b-isoprene) diblock copolymer micelles is described. A DMTA rheometer was modified so that one can apply oscillatory shear and obtain the scattering pattern along the shear gradient direction. A cone and plate shear cell was designed to access scattering along the shear vorticity direction, and both oscillatory and steady shear can be applied. The most popular way to employ steady shear on relatively low viscosity fluids is to use a Couette cell, because a high shear rate can be readily achieved without disturbing the sample by overflow. In this work, oscillatory shear was used to obtain a single crystal-like scattering pattern, and thereby to examine the mechanism of the thermotropic transition between face-centered cubic (fcc) and body-centered cubic (bcc) lattices. By applying the steady shear, the response of the fcc lattices to various shear rates is discussed.

On the Selection of FCC and BCC Lattices in Poly(styrene-b-isoprene) Copolymer Micelles

  • Bang, Joona;Lodge, Timothy P.
    • Macromolecular Research
    • /
    • v.16 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • Spherical micelles of poly(styrene-b-isoprene) (SI) diblock copolymers in selective solvents have been reported to pack onto either face-centered cubic (fcc) or body-centered cubic (bcc) lattices. The selection rule for fcc and bcc lattices has been understood in terms of the intermicellar potentials, and they have been quantified using the ratio of the corona layer thickness to the core radius, $L/R_c$, as suggested by McConnell and Gast. In order to test the validity of the McConnell-Gast criterion, this study compared the $L/R_c$ values from various solutions i.e. nine SI copolymers in several different selective solvents. The McConnell-Gast criterion was not found to be a determining factor, even though it could explain the fcc/bcc selection qualitatively. From the phase diagrams, the transition between fcc and bcc phases was also considered as a function of concentration and temperature, and their physical mechanisms are discussed based on the recent mean-field calculation reported by Grason.

Gas Flow through Arrays of Spheres Coated by Liquid Film (액체 막이 입혀진 구 입자 배열을 지나는 기체 흐름)

  • Koo, Sangkyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.646-652
    • /
    • 2009
  • Present study deals with a three phase flow problem of determining drag acting on spheres wetted by liquid flow by gas flow through the spheres in simple cubic (SC), body-center cubic (BCC) and face-centered cubic (FCC) array, respectively, when the inertia of gas is negligibly small. The liquid flow driven by gravity on the spheres is assumed to be unaffected by the countercurrent gas flow. A perturbation method coupled with a multipole expansion method is used to calculate the hydrodynamic interactions between spheres and hence determine the effect of liquid film and flow on the gas flow for each periodic array of spheres. An approximate method for evaluating the effect of the liquid film is also presented for simple estimations. It is found that the approximation results are in a reasonable agreement with the numerical calculations.

Mechanical Properties of Metallic Additive Manufactured Lattice Structures according to Relative Density (상대 밀도에 따른 금속 적층 제조 격자 구조체의 기계적 특성)

  • Park, Kwang-Min;Kim, Jung-Gil;Roh, Young-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The lattice structure is attracting attention from industry because of its excellent strength and stiffness, ultra-lightweight, and energy absorption capability. Despite these advantages, widespread commercialization is limited by the difficult manufacturing processes for complex shapes. Additive manufacturing is attracting attention as an optimal technology for manufacturing lattice structures as a technology capable of fabricating complex geometric shapes. In this study, a unit cell was formed using a three-dimensional coordinate method. The relative density relational equation according to the boundary box size and strut radius of the unit cell was derived. Simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) with a controlled relative density were designed using modeling software. The accuracy of the equations for calculating the relative density proposed in this study secured 98.3%, 98.6%, and 96.2% reliability in SC, BCC, and FCC, respectively. A simulation of the lattice structure revealed an increase in compressive yield load with increasing relative density under the same cell arrangement condition. The compressive yield load decreased in the order of SC, BCC, and FCC under the same arrangement conditions. Finally, structural optimization for the compressive load of a 20 mm × 20 mm × 20 mm structure was possible by configuring the SC unit cells in a 3 × 3 × 3 array.

A Computer Programming for the Analysis of Crystal Structures (결정 구조들의 해석을 위한 컴퓨터 프로그래밍)

  • Kim, Jin-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.3
    • /
    • pp.872-878
    • /
    • 2000
  • In this paper a computer programming for the expression of nearest neighbor atoms in face-centered cubic (FCC) and body-centered cubic (BCC) crystals was suggested as one of the approaches to understand each of the crystal structure. By using this computer programming the distance values between a reference atom and the nearest neighbor atoms, and the numbers of the nearest neighbor atoms were calculated ane compared for the FCC and BCC crystals. In this algorithm, the positions of the atoms in a crystal were defined as two categories: the corner atoms and face- or body-centered atoms, and considered respectively. For the same order of nearest neighbor atoms except the second order ones the distance values form the reference atom were smaller in the FCC crystals than those in the BCC. Also, the numbers of he first and third nearest neighbor atoms n the FCC crystals were larger than those in the BCC. This difference was explained by the comparison of each atomic packing ratio of the FCC and BCC crystals. The algorithm used in this programming can also be expanded to the analysis of other crystal structures.

  • PDF

A study on structural properties of copper nanowires (구리 나노와이어의 구조적 특성에 관한 연구)

  • 강정원;권오근;황호정
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.1
    • /
    • pp.59-67
    • /
    • 2002
  • The structures and properties of Cu nanowires have been investigated using molecular dynamics simulations. Cylindrical multi-shell Cu nanowires maintain their structures at room temperature and their structural properties are different from the structural properties of nanowires with face-centered-cubic structure. The results from nanopillar and tensile testing of cylindrical multi-shell Cu nanowire showed structures related to pentagonal needle-like crystal structures. Since the subunits of pentagonal nanowire with needle-like crystal are face-centered-cubic structure, pentagonal multi-shell nanowires are stable one-dimensional structures in nanostructured materials.

Analytic Solutions of Finite F.C.C. Metal Clusters with Cluster Orbitals

  • Juhyeok Lee;Geun Ha Ryu;Hojing Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.63-71
    • /
    • 1993
  • By use of cluster orbitals, analytic solutions of finite face-centered cubic clusters are obtained. Taking interactions between up to the second nearest neighbors into account, the forms of all the elements of the Hamiltonian matrix are found explicitly within Huckel approximation. By adopting $D_{2k}$ point group to the cluster, the matrix is simplified. We assume that the cluster orbitals can mix together only when their state indices are indentical. It is then possible to calculate various physical properties of face-centered cubic metal clusters and example are shown for palladium clusters. The results show that density of states and projected density of states are similar, qualitatively, with those obtained by extended Huckel calculation.

Study of order-disorder transition in Pt-Ni bimetallic alloys

  • Seo, Ok-Gyun;Hwang, Jae-Seong;O, Pil-Geon;Gang, Hyeon-Cheol;Jeong, Hui-Su;Kim, -Chan;Kim, Dae-Gyun;Kim, Yun-Hui;Lee, Su-Ung;Kim, Gi-Ho;Jeong, Geon-Yeong;No, Do-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.403-403
    • /
    • 2010
  • The Pt-Ni alloy is an electro-catalyst of interest in the low temperature direct methanol fuel cells(DMFCs). It has been already reported that the Pt-Ni alloy catalysts may even have enhanced activity compared to pure platinum catalyst, depending on how the surfaces are prepared. The order-disorder transition in bimetallic alloy such as $\beta$-CuZn, Cu3Au, and CuAu have been investigated greatly by x-ray diffraction. After annealing the bimetallic alloy, the crystal structure changes as observed in the order-disorder transition of Cu3Au which changes from the face centered cubic to a simple cubic structure. Pt-Ni bimetallic alloy has been already reported to have the face centered cubic structure. However, in nano-scale Pt-Ni bimetallic alloy crystals the crystal structures changes to a simple cubic structure. In this experiment, we have studied the order-disorder transition in Pt-Ni bimetallic nanocrystals. Pt/Ni thin films were deposited on sapphire(0001) substrates by e-beam evaporator and then Pt-Ni alloy were formed by RTA at 500, 600, and $700^{\circ}C$ in a vacuum environment and Pt-Ni nano particles were formed by RTA at $1059^{\circ}C$ in a vacuum environment. We measured the structure of Pt-Ni bimetallic alloy films using synchrotron x-ray diffraction and SEM.

  • PDF

The failure analysis of patch bonded repair on Al 6061-T6 alloy structures with cracked bolt hole (볼트 균열 홀을 갖는 알루미늄 6061-T6 합금의 패치 본딩 보수/보강 부위에 대한 파괴역학적 해석에 관한 연구)

  • Yoon, Young-Ki;Kim, Guk-Gi;Park, Jong-Jun;Yoon, Hi-Seak
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.148-152
    • /
    • 2000
  • The aluminum alloy 6061-T6 has been successfully used in structural applications especially the pressure vessel of the Advanced Neutron Source research reactor. And aluminum alloys, including 6061-T6, have a face-centered-cubic crystals structure. Under normal circumstances face-centered-cubic crystal structures do not exhibit cleavage fractures even at very lo9w temperatures. In aluminum-based structures, plates frequently find use as connecting links. Mechanical fasteners are often utilized in instances where ease of application, familiarity with fabrication processes, and severe dynamic loading are of concern. Plates frequently find use as connecting elements in structures built from aluminum alloys. Many structural elements employ mechanical fasteners. Twenty and twenty aluminum alloy 6061-T6 plates, representing four different bolt patterns, were mechanically deformed. And variable materials such as A1 6061-T6, Al 2024-T3, Carbon/Epoxy, Glass/Epoxy Composite and Woven fiber composite, are used as patch materials. From this experiment, it has been shown that the strength of patch-repaired specimens is different with the patch materials.

  • PDF

Electrode Performance of Pt-Cr-Ni Alloy Catalysts for Oxygen Electrode in Polymer Electrolyte Fuel Cell (고분자전해질형 연료전지에서 산소극을 위한 백금-크롬-니켈 합금촉매의 전극특성)

  • Sim, Jung-Pyo;Lee, Hong-Gi
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.831-837
    • /
    • 2000
  • To improve the catalytic activity of platinum on polymer electrolyte fuel cell(PEFC), platinum was alloyed with cobalt and nickel at various temperature. By XRD, it was observed the crystal structure of alloy catalysts were the ordered face centered cubic(f.c.c) due to the superlattice line at $33^{\circ}$. As heat-treatment temperature was increased, the particle size of alloys also were increased and the crystalline lattice parameters were decreased. According to the results from mass activity, specific activity and Tafel slope measured by cell performance test and cyclic voltammogram, the catalyst activities of alloys are higher than that pure platinum.

  • PDF