• Title/Summary/Keyword: Fan-Duct System

Search Result 80, Processing Time 0.02 seconds

Optimization of Duct System with a Cross Flow Fan to Improve the Performance of Ventilation (환기 성능 향상을 위한 횡류팬을 이용한 덕트 형상의 최적화)

  • Lee, Sang Hyuk;Kwo, Oh Joon;Hur, Nahmkeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Recently, the duct system with a cross flow fan was used to improve the ventilation in various industrial fields. For the efficient ventilation, it is necessary to design the duct system based on the flow characteristics around the cross flow fan. In the present study, the flow characteristics around a cross flow fan in the ventilation duct were predicted by using the moving mesh and sliding interface techniques for the rotation of blades. To design the duct system with the high performance of ventilation, the CFD simulations were repeated with the revised duct model based on the DOE. With the numerical results of flow rate through the ventilation duct with various geometric parameters, the optimized geometry of ventilation duct to maximize the flow rate was obtained by using the Kriging approximation method. From the performance curves of cross flow fan in the original and optimized models of ventilation duct, it was observed that the flow rate through the optimized model is about 16 percent larger than that through the original model.

Performance Improvement of Fan and Duct System for Kimchi Refrigerator (김치 냉장고용 홴 및 덕트 시스템 성능 개선)

  • Kim, Joon-Hyung;Choi, Young-Seok;Yoon, Joon-Yong;Park, Sung-Kwan;Hyun, Seok-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.45-51
    • /
    • 2011
  • The kimchi refrigerator is the electronic home appliance which is used for the maturing and a custody of the kimchi. In this paper, performance improvement of fan and duct system for kimchi refrigerator has been studied by using a commercial CFD code. In order to achieve a improved fan performance, three-dimensional computational fluid dynamics and the Design of Experiments method have been applied. Additionally, to know the optimized duct inlet shape with the optimized fan, the overall performances were calculated with various duct inlet shapes. The final fan and duct system for kimchi refrigerator showed improved performance in efficiency and total head compared with the existing model.

Noise Reduction of a Ventilating Fan System using Micro-Perforated Panel (미세 다공판을 이용한 환기팬 시스템의 소음저감)

  • Lee, Jong-Seuk;Song, Hwa-Young;Lee, Dong-Hoon;Kwon, Hyuk-Jung;Kim, Dong-Yun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1209-1211
    • /
    • 2006
  • This paper introduces an experimental study for the noise reduction of a ventilating fan system. For the purpose of noise reduction, conventionally an absorptive duct silencer filled with a glass fiber has been utilized. However, a glass fiber has some disadvantages like hygiene and secondary pollution problems. In order to overcome these problems, in this paper, a perforated duct silencer has been applied to the ventilating fan system. For the designing of a perforated duct silencer, the transmission losses for various perforated panel systems are measured and compared with its noise reduction performance.

  • PDF

A Study on the Vibration Phenomena of the Duct-fan Systems in Fossil Fueled Boilers : Inlet Vortex Induced Excessive Vibration (화력 발전용 보일러 덕트-홴 시스템의 진동현상에 대한 연구 : 입구측 와류에 의한 과대진동 사례)

  • 김철홍;주영호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.194-201
    • /
    • 2003
  • During the operation, fatigue failures and cracks of duct plate due to excessive duct vibration occurred in a fan-duct system of fossil fueled boilers. We measured static pressure variation (pressure pulsation) in the outlet, and also measured vibration at the outlet duct of a centrifugal fan. It was found that strong pressure pulsation caused by the inlet vortex occurred in inlet vane of centrifugal fan in the middle range of vane opening. Thus, excessive duct vibration is caused by strong pressure pulsation. In this Paper, it is shown that the frequency and amplitude of pressure pulsation depend mainly on vane opening and are compared with duct vibration. Also, effective solution for reducing pressure pulsation and vibration are presented.

An Experimental Study on the Noise Characteristics and Reduction of a Ventilating Fan System (환기팬 시스템의 소음특성과 저감에 관한 실험적 연구)

  • Kim, Deok-Han;Lee, Dong-Hoon;Kwon, Hyuk-Jung;Kim, Dong-Yun;Lee, Jong-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.500-505
    • /
    • 2005
  • This paper introduces an experimental study for the noise characteristics and reduction of a ventilating fan system. For the purpose of noise reduction of it, an absorptive duct silencer filled with a glass fiber has been conventionally utilized. However, a glass fiber has some disadvantages like hygiene and secondary pollution problems. In order to overcome these problems, in this paper, a perforated duct silencer has been applied to the ventilating fan system. For the designing of a perforated duct silencer, the transmission losses for various perforated panel systems are measured and compared with their sound absorption performances.

  • PDF

Study on the noise reduction occurred to rotation in duct (덕트 회전체에서 발생하는 소음저감에 대한 연구)

  • Park, Hong-Ul;Kim, You-Jae;Park, Sung-Kwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.875-879
    • /
    • 2006
  • Noise reduction has become a major issue of the duct air-conditioners. This paper describes the reduction of noise and vibration of rotational slim duct system. The design of slim duct system is the most important point of noise reduction in terms of the motor of 2f line noise, resonance noise between forced frequency and natural frequency of Sirocco fan, unbalance noise of motor axis and the noise induced refrigerant. The noise of duct system is mainly measured from diffuser and bottom of duct. The optimal design was implemented after measuring the effect of noise and vibration in each part which is composed of duct system. In this paper, experimental results show that the main elements in air-conditioner duct design. These elements are anti-vibration rubber of motor, axis length of motor, rubber coupler, materials of sirocco fan and control method of motor which are the most vital factors in reducing noise.

  • PDF

Ventilation Performance According to Outdoor and Operating Conditions of the Vertical Exhaust Duct System in High Riser Public Houses (초고층 공동주택의 입상덕트 환기시스템에서 외기조건과 작동조건에 따른 환기성능평가)

  • Kim, Young-Bae;Kim, Jae-Hong;Sung, Jae-Yong;Lee, Myeong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2011
  • The ventilation performance of a vertical exhaust duct system in the high riser public house has been evaluated by a commercial software, Fluid Flow, which solves pressure losses through the duct system including bathroom fans and a hybrid roof fan. During the numerical simulations, outdoor wind condition and stack effects in summer and winter were considered as well as the operating conditions of a basement damper and the roof fan. The results show that the bathroom ventilation in summer is the most unsatisfactory. The opening of the basement damper has a problem that the polluted air in the lower floors is exhausted to the underground parking lot, not to the rooftop. If the basement damper is closed, the exhaust flow rate in the lower floors is not sufficient due to the strong flow resistance in the long vertical duct even though the roof fan is under operating.

A Detailed Design and Manufacture of the Fan-Duct System for Helicopter Anti-Torque (헬리콥터 반 토오크 팬-덕트 시스템 상세 설계 및 제작)

  • 김덕관;심정욱;홍단비;지강혁;정철호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.123-126
    • /
    • 2003
  • This paper describes the development procedure for Tail-Fan system which has the role of anti-torque and yaw control in helicopter. A detailed design of Tail-Fan system was done and structural analysis also was done. After finishing detailed design, Detailed drawings were generated for manufacture. Through detailed design and manufacture, required techniques were achieved for helicopter development. After validation through performance and stability test, acquired techniques will be applied to development of Korea Multi-role Helicopter(KMH) which will be launched

  • PDF

CFD SIMULATION AND ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF SMALL DUCTED FAN AIRCRAFT (소형 덕트 팬 항공기의 전산해석 및 공력특성 분석)

  • Kim, C.W.;Choi, S.W.;Ahn, S.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.14-16
    • /
    • 2010
  • A Duct surrounding a fan is known to reduce the tip loss and increase the fan performance efficiency. It also reduces the fan noise drastically. Ducted fan, therefore, has been focused to be a promising candidate for high efficient propulsion system. In this study, a small plane having ducted fan which can be tilted for vertical take-off and landing, is analyzed by CFD and its aerodynamic characteristics are compared. Ductef fan aircraft has small range of angle of attack for mininum drag and duct design should be focused for efficient ducted fan aircraft.

  • PDF

A Study on the Duct Design of HVAC System Using the Equal Friction Method and the T-method (등압법과 T-method를 이용한 공조시스템 배관 설계에 관한 연구)

  • Park, Joon-Suk;Choi, Gil-Hwan;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.435-443
    • /
    • 2009
  • Optimal duct design of a HVAC system requires analysis technology to accurately evaluate its pressure losses, flow rate and velocity for making a compromised design among fan capacity and duct size affecting initial manufacturing and operation costs, and noise induced by the HVAC system. In this paper, we carry out initial duct design using the equal friction method. Using the result, the T-method is applied for accurate analysis of flow rate. Then, the duct size is modified using the difference between the required and the calculated flow rate, which can guarantee required flow rate, reduce the pressure unbalance among duct paths and lead to select optimal fan performance. To verify the validity and effectiveness of the proposed design method, an example for HVAC system design including noise analysis is demonstrated.