• Title/Summary/Keyword: Fast Fourier Transform

Search Result 847, Processing Time 0.035 seconds

Study of Radix-3 FFT (Radix-3 FFT에 관한 고찰)

  • Jung, Hae-Seung
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.98-105
    • /
    • 2010
  • Fast Fourier Transform is the fast implementation of Discrete Fourier Transform, which deletes periodic operation of DFT. According to the definition, radix-2 FFT can be implemented byre cursive call which divides the input signal points into 2 signal points. Because of its time-consuming stack-copy operation, this recursive method is very slow. To overcome this drawback, butterfly operation with signal rearrangement was devised. Based on the ideas of signal rearrangement and butterfly operation, this paper applies the signal rearrangement method to the Radix-3 FFT and checks the validity of this method.

A Study on the Method for Analyzing Wind Power Outputs through Fast Fourier Transform(FFT) (Fast Fourier Transform을 이용한 풍력발전의 출력 분석)

  • Park, Beomjun;Hur, Jin
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.87-88
    • /
    • 2015
  • 본 논문에서는 제주풍력단지에 대한 측정 데이터(measured wind power outputs)를 기반으로 Fast Fourier Transform(FFT)을 실시하고, 이를 이용하여 각 풍력발전단지의 주파수 특성에 대해 분석해보고자 한다.

  • PDF

Effect of Synchronization Errors on the Performance of Multicarrier CDMA Systems

  • Li Ying;Gui Xiang
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.38-48
    • /
    • 2006
  • A synchronous multicarrier (MC) code-division multiple access (CDMA) system using inverse fast Fourier transform (IFFT) and fast Fourier transform (FFT) for the downlink mobile communication system operating in a frequency selective Rayleigh fading channel is analyzed. Both carrier frequency offset and timing offset are considered in the analysis. Bit error rate performance of the system with both equal gain combining and maximum ratio combining are obtained. The performance is compared to that of the conventional system using correlation receiver. It is shown that when subcarrier number is large, the system using IFFT/FFT has nearly the same performance as the conventional one, while when the sub carrier number is small, the system using IFFT/FFT will suffer slightly worse performance in the presence of carrier frequency offset.

PAPR reduction of OFDM systems using H-SLM method with a multiplierless IFFT/FFT technique

  • Sivadas, Namitha A.
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.379-388
    • /
    • 2022
  • This study proposes a novel low-complexity algorithm for computing inverse fast Fourier transform (IFFT)/fast Fourier transform (FFT) operations in binary phase shift keying-modulated orthogonal frequency division multiplexing (OFDM) communication systems without requiring any twiddle factor multiplications. The peak-to-average power ratio (PAPR) reduction capacity of an efficient PAPR reduction technique, that is, H-SLM method, is evaluated using the proposed IFFT algorithm without any complex multiplications, and the impact of oversampling factor for the accurate calculation of PAPR is analyzed. The power spectral density of an OFDM signal generated using the proposed multiplierless IFFT algorithm is also examined. Moreover, the bit-error-rate performance of the H-SLM technique with the proposed IFFT/FFT algorithm is compared with the classical methods. Simulation results show that the proposed IFFT/FFT algorithm used in the H-SLM method requires no complex multiplications, thereby minimizing power consumption as well as the area of IFFT/FFT processors used in OFDM communication systems.

N-Point Fast Fourier Transform Using 4$\times$4 Fast Reverse Jacket Transform (4-점 리버스 자켓 변환를 이용한 N-점 고속 푸리에 변환)

  • 이승래;성굉모
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.4B
    • /
    • pp.418-422
    • /
    • 2001
  • 4-점 리버스 자켓 변환 (4-Point Reverse Jacket transform)의 장점 중의 하나는 4-점 fast Fourier transform(FFT)시 야기되는 실수 또는 복소수 곱셈을 행렬분해(matrix decomposition)를 이용, 곱셈인자를 모두 대각행렬에만 집중시킨, 매우 간결하고 효율적인 알고리즘이라는 점이다. 본 논문에서는 이를 N 점 FFT에 적용하는 알고리즘을 제안한다. 이 방법은 기존의 다른 변환형태보다 확장하거나 구조를 파악하기에 매우 용이하다.

  • PDF

Large-scale 3D fast Fourier transform computation on a GPU

  • Jaehong Lee;Duksu Kim
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1035-1045
    • /
    • 2023
  • We propose a novel graphics processing unit (GPU) algorithm that can handle a large-scale 3D fast Fourier transform (i.e., 3D-FFT) problem whose data size is larger than the GPU's memory. A 1D FFT-based 3D-FFT computational approach is used to solve the limited device memory issue. Moreover, to reduce the communication overhead between the CPU and GPU, we propose a 3D data-transposition method that converts the target 1D vector into a contiguous memory layout and improves data transfer efficiency. The transposed data are communicated between the host and device memories efficiently through the pinned buffer and multiple streams. We apply our method to various large-scale benchmarks and compare its performance with the state-of-the-art multicore CPU FFT library (i.e., fastest Fourier transform in the West [FFTW]) and a prior GPU-based 3D-FFT algorithm. Our method achieves a higher performance (up to 2.89 times) than FFTW; it yields more performance gaps as the data size increases. The performance of the prior GPU algorithm decreases considerably in massive-scale problems, whereas our method's performance is stable.

A Pipelined Hadamard Transform Processor (파이프라인 방식에 의한 아다마르 변환 프로세서)

  • 황영수;윤대희;차일환
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1617-1623
    • /
    • 1989
  • The introduction of the fast Fourier transform(FFT),an efficient computational algorithm for the discrete Fourier transform(DFT) by Cooley and Tukey(1965), has brought to the limelight various other discrete transforms. Some of the analog functions from which these transforms have been derived date back to the early 1920's, for example, Walsh functions (Walsh, 1923) and Hadamard Transform(Enomoto et al, 1965). Fast algorithms developed for the forward transform are equally applicable, exept for minor changes, to the inverse transform. In this paper, we present a simple pipelined Hadamard matrix(HM) which is used to develop a fast algorithm for the Hadamard Processor (HP). The Fast Hadamard Transform(FHT) can be derived using matrix partitioning techniques. The HP system is incorporated through a modular design which permits tailoring to meet a wide range of video data link applications. Emphasis has been placed on a low cost, a low power design suitable for airbone system and video codec.

  • PDF

A Comparison between Abel-Fourier and Digital Linear Filter Methods (Abel-Fourier법과 디지탈 선형필터법과의 비교)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.20 no.2
    • /
    • pp.119-123
    • /
    • 1987
  • Hankel transform of order 0 can be represented by a combination of Abel transform and Fourier transform. This Abel-Fourier method can offer computational advantages over a conventional digital linear filter method through the uses of a rapid Abel transform with shift variant recursive filter and of a fast Fourier transform. The Abel-Fourier method, however, is generally less accurate than a well-designed digital linear filter method. In geoelectrical applications, the digital linear filter method seems to be more flexible than the Abel-Fourier method.

  • PDF

Efficient IFFT Design Using Mapping Method (Mapping 기법을 이용한 효율적인 IFFT 설계)

  • Jang, In-Gul;Kim, Yong-Eun;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.11-18
    • /
    • 2007
  • FFT(Fast Fourier Transform) processor is one of the key components in the implementation of OFDM systems such as WiBro, DAB and UWB systems. Most of the researches on the implementation of FFT processors have focused on reducing the complexities of multipliers, memory and control circuits. In this paper, to reduce the memory size required for IFFT(Inverse Fast Fourier Transform), we propose a new IFFT design method based on a mapping method. By simulations, it is shown that the reposed IFFT design method achieves more than 60% area reduction and much SQNR(Signal-to-Quantization-Noise Ratio) gain compared with previous IFFT circuits.

Modification of the fast fourier transform-based method by signal mirroring for accuracy quantification of thermal-hydraulic system code

  • Ha, Tae Wook;Jeong, Jae Jun;Choi, Ki Yong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1100-1108
    • /
    • 2017
  • A thermal-hydraulic system code is an essential tool for the design and safety analysis of a nuclear power plant, and its accuracy quantification is very important for the code assessment and applications. The fast Fourier transform-based method (FFTBM) by signal mirroring (FFTBM-SM) has been used to quantify the accuracy of a system code by using a comparison of the experimental data and the calculated results. The method is an improved version of the FFTBM, and it is known that the FFTBM-SM judges the code accuracy in a more consistent and unbiased way. However, in some applications, unrealistic results have been obtained. In this study, it was found that accuracy quantification by FFTBM-SM is dependent on the frequency spectrum of the fast Fourier transform of experimental and error signals. The primary objective of this study is to reduce the frequency dependency of FFTBM-SM evaluation. For this, it was proposed to reduce the cut off frequency, which was introduced to cut off spurious contributions, in FFTBM-SM. A method to determine an appropriate cut off frequency was also proposed. The FFTBM-SM with the modified cut off frequency showed a significant improvement of the accuracy quantification.