• Title/Summary/Keyword: Fatigue life distribution

Search Result 285, Processing Time 0.022 seconds

Fatigue Life Prediction of CFRP using Fatigue Progressive Damage Model (피로누적손상을 이용한 직조 CFRP의 피로수명 예측)

  • Jang, Jae-Wook;Cho, Je-Hyoung;Oh, Dong-Jin;Kim, Myung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.248-254
    • /
    • 2015
  • The strength and fatigue life of Satin and Twill-woven CF/epoxy composite(CFRP) have been investigated. Damage mechanism fatigue method has been used to assess fatigue damage accumulation. It is based on measured residual stiffness and residual strength of carbon-fiber reinforced plastic(CFRP) laminates under cyclic loading. Fatigue damage evolution in composite laminates and predict fatigue life of the laminates were simulated by finite element analysis(FEA) method. The stress analysis was carried out in MSC patran/Nastran. A modified Hashin's failure criterion di rmfjapplied to predict the failure of the experimental data of fatigue life but a Ye-delamination criterion was ignored because of 2D modeling. Almost linear stiffness and strength degradation were observed during most of the fatigue process. These stress distribution data were adopted in the simulation to simulate fatigue behavior and estimate life of the laminates. From the results, the predicted fatigue life is more conservatively estimated than the experimental results.

Statistical Analysis for Fatigue Life Evaluation of Vehicle Muffler (자동차용 머플러의 피로수명평가를 위한 통계적 분석)

  • Choi, Ji-Hun;Lee, Yong-Jun;Yoon, Jin-Ho;Kang, Sung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.365-372
    • /
    • 2013
  • In this study, a statistical method for evaluating the fatigue life of a vehicle muffler was used to obtain reliable fatigue data using a limited number of specimens. Cyclic bending tests were conducted using specimens manufactured to be exactly the same as the mufflers installed in cars that are currently in use. To estimate the fatigue life by comparing the data obtained during the fatigue tests, the most suitable probability density function for the normal, lognormal, and Weibull distributions was selected. A goodness-of-fit test was performed on the probability distributions, and then a Weibull distribution using the least square method was selected. By using the selected Weibull distribution, the probability-moment-life curves (P-M-N curve) reflecting the fatigue characteristics were suggested as the data for the reliable design of a muffler.

Statistical Analysis of Fatigue Crack Growth Properties for Silicon Carbide Particles Reinforced Metal Matrix Composites ($SiCp/A\ell$ 6061 복합재료의 피로균열진전특성에 관한 통계학적 해석)

  • 권재도;문윤배;안정주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.130-139
    • /
    • 1996
  • The silicon carbide particles reinforced aluminium 6061($SiCp/A\ell$) composites are generally known have wild range of applications from automobiles to airospaces. But, by the results of existing study for $SiCp/A\ell$ composites, there are reports that the fatigue life of $SiCp/A\ell$ composites has improved than $A\ell$matrixes and has not improved then $A\ell$ matrixes. Consequently, in order to perform the reliable life prediction for $SiCp/A\ell$, the properties of probability distribution of fatigue crack initiation life & fracture life, crack growth length in constant number of cycles, crack growth rate in constant stress intensity factor range and m & C value in Paris's fatigue crack growth law and the estimation of statistical parameters have been evaluated by the statistics method.

  • PDF

Effect of Indentation Residual Stresses on the Fatigue Crack Initiation Life (피로균열 발생수명에 대한 압입 잔류응력의 영향)

  • 이환우;강태일
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.158-165
    • /
    • 2004
  • Up to now, many crack repair techniques have been developed for inhibiting crack growth in structural components. However, the simplest way for inhibiting crack growth is to apply a indentation at the crack tip or at some distance ahead of the expected crack growth path so as to produce residual compressive stresses that can reduce the effective stresses around the crack tip. In spite of its importance to the aerospace industry, little attention has been devoted to evaluation of the indentation residual stress effect on the fatigue crack initiation life quantitatively. Therefore, in the present work, the magnitude and distribution of the indentation residual stresses were investigated in order to estimate the beneficial effect on fatigue crack initiation by using finite element method. Furthermore, to examine the validity of finite element analysis results, residual stress distribution in the indented specimen was measured by using X-ray diffraction technique, and fatigue crack behavior at fastener hole in aluminum alloy 7075-T6 before and after indentation processes was investigated.

Fatigue Properties of Rail Steel Under Constant Amplitude Loading and Variable Amplitude Loading (일정 및 변동하중하의 레일강의 피로특성)

  • Kim, Cheol-Su;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.654-661
    • /
    • 2001
  • In this study, fatigue growth behavior of the transverse crack, which was the most dangerous damage among the various types of rail defects, was investigated using the notched keyhole specimen under constant amplitude loadings. Fatigue limit of smooth specimen in rail steel at R=0 was 110MPa, and the fatigue crack initiation life in the region of the low stress amplitude (ie. long life) occupied the major portion of the total fatigue life. The fatigue strength under variable amplitude loading was converted to the equivalent fatigue strength based upon. Miners rule, which was estimated approximately 9% lower than that under constant amplitude loading. Also, in the low ΔK(sub)rms region ($\leq$21MPa√m), fatigue crack growth rate (da/dN) under constant amplitude loading was higher than that under variable amplitude loading, whereas the tendency was reversed in the high ΔK(sub)rms region. It is believed that this behavior is due to the transition of fracture appearance.

Experimental study on the fatigue performance of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang;Jing, Chuanhe;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.229-241
    • /
    • 2021
  • This work focused on aluminum foam sandwich (AFS) with different foam core densities and different face-sheet thicknesses subjected to constant amplitude three-point bending cyclic loading to study its fatigue performance. The experiments were conducted out by a high frequency fatigue test machine named GPS-100. The experimental results showed that the fatigue life of AFS decreased with the increasing loading level and the structure was sensitive to cyclic loading, especially when the loading level was under 20%. S-N curves of nine groups of AFS specimens were obtained and the fatigue life of AFS followed three-parameter lognormal distribution well. AFS under low cyclic loading showed pronounced cyclic hardening and the static strength after fatigue test increased. For the same loading level, effects of foam core density and face-sheet thickness on the fatigue life of AFS structure were trade-off and for the same loading value, the fatigue life of AFS increased with aluminum foam core density or face-sheet thickness monotonously. Core shear was the main failure mode in the present study.

Evaluation for Probabilistic Distributions of Fatigue Life of Marine Propeller Materials by using a Monte Carlo Simulation (몬테카를로 시뮬레이션에 의한 선박용 프로펠러재의 피로수명 확률분포 평가)

  • Yoon, Han-Yong;Zhang, Jianwei
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1055-1062
    • /
    • 2008
  • Engineering materials have been studied and developed remarkably for a long time. But, few reports about marine propeller materials are presented. Recently, some researchers have studied the material strength of marine propellers. However, studies on parametric sensitivity and probabilistic distribution of fatigue life of propeller materials have not been made yet. In this study, a method to predict the probabilistic distributions of fatigue life of propeller materials is presented, and the influence of several parameters on the life distribution is discussed.

Low Cycle Fatigue Characteristics of A356 Cast Aluminum Alloy and Fatigue Life Models (주조 알루미늄합금 A356의 저주기 피로특성 및 피로수명 모델)

  • 고승기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.131-139
    • /
    • 1993
  • Low cycle fatigue characteristics of cast aluminum alloy A356 with a yield strength and ultimate strength of 229 and 283 MPa respectively was evaluated using smooth axial specimen under strain controlled condition. Reversals to failure ranged from 16 to 107. The cast aluminum alloy exhibited cyclically strain-gardening behavior. The results of low cycle fatigue tests indicated that the conventional low cycle fatigue tests indicated that the conventional low cycle fatigue life model was not a satisfactory representation of the data. This occurred because the elastic strain-life curve was not-log-log linear and this phenomena caused a nonconservative and unsafe fatigue life prediction at both extremes of long and short lives. A linear log-log total strain-life model and a bilinear log-log elastic strain-life model were proposed in order to improve the representation of data compared to the conventional low cycle fatigue life model. Both proposed fatigue life models were statistically analyzed using F tests and successfully satisfied. However, the low cycle fatigue life model generated by the bilinear log-log elastic strain-life equation yielded a discontinuous curve with nonconservatism in the region of discontinuity. Among the models examined, the linear log-log total strain-life model provided the best representation of the low cycle fatigue data. Low cycle fatigue life prediction method based on the local strain approach could conveniently incorporated both proposed fatigue life models.

  • PDF

A Practical Model for the Fatigue Reliability Analysis of Steel Highway Bridges (강도로교의 피로신뢰성 해석을 위한 실용적 모형)

  • 신재철;장동일;이성재;조효남
    • Computational Structural Engineering
    • /
    • v.1 no.1
    • /
    • pp.113-122
    • /
    • 1988
  • A practical model for predicting the risk of fatigue failure of steel highway bridges is developed in this study. The proposed model is derived from fatigue reliability methods by incorporating various factors which may affect the fatigue life of bridges. The fatigue reliability function is assumed to follow the Weibull distribution. The computational form of the Weibull is adopted from Ang-Munse's approach that includes all the statistical uncertainties of the fatigue life of steel members and the stress ranges under variable amplitude loadings. The model accounts for the variation in ADTT, the change in stress history and the effects of inspections, which may occur during the serivce life of bridges. Stress range histograms are collected from the random stress spectra based on the field measurements of an existing bridge, and, thus, the resulting stress range frequency distribution is modelled with a beta distribution. The results of applications of the proposed fatigue analysis methods to an existing bridge show that the proposed models with the computer program developed for numerical computations can be used as a practical tool for the fatigue rating or for the predictions of the remaining fatigue life of deteriorated existing steel bridges.

  • PDF

Effect of Specimen Thickness by Simulation of Probabilistic Fatigue Crack Growth

  • Kim, Seon-Jin
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.232-237
    • /
    • 2001
  • The evaluation of specimen thickness effect of fatigue crack growth life by the simulation of probabilistic fatigue crack growth is presented. In this paper, the material resistance to fatigue crack growth is treated as a spatial stochastic process, which varies randomly on the crack surface. Using the previous experimental data, the non-Gaussian(eventually Weibull, in this report) random fields simulation method is applied. This method is useful to estimate the probability distribution of fatigue crack growth life and the variability due to specimen thickness by simulating material resistance to fatigue crack growth along a crack path.

  • PDF